
Navigation Recommendations for Exploring
Hierarchical Graphs

Stefan Gladisch, Heidrun Schumann, Christian Tominski

Institute for Computer Science, University of Rostock, Germany

Abstract. Navigation is a key interaction when analyzing graphs by
means of interactive visualization. Particularly for unknown graphs, the
user often faces situations where it is not entirely clear where to go next.
For hierarchical graphs, the user may also ponder whether it is useful to
look at the data at a higher or lower level of abstraction.
In this paper, we present a novel approach for recommending places in
a hierarchical graph that are worth visiting next. A flexible definition of
interestingness based on the notion of a degree of interest (DOI) allows
us to recommend horizontal navigation in terms of the graph layout and
also vertical navigation in terms of the level of abstraction. The actual
recommendation is communicated to the user through unobtrusive visual
cues that are embedded into the visual representation of the graph. A
proof-of-concept implementation has been integrated into an existing
graph visualization system.

1 Introduction

When exploring unknown graphs, users need to switch between overview and
detail representations and they need to navigate to different parts of the graph.
These tasks are typically supported by a zoomable representation of the graph,
where the graph is hierarchically structured to provide different levels of abstrac-
tion [1]. The user can zoom & pan to visit different parts of the graph, and can
expand or collapse nodes to adjust the level of abstraction. There are several
existing systems that implement this strategy [2], [3], [4]. A big plus of these
systems is that users can freely choose the part of the data they are interested
in and the level of abstraction that suits their needs.

However, a problem is that users may be overwhelmed with the seemingly
infinite number of possibilities for navigation. According to Spence [5], a key
question for the user is: Where should I go now? Figure 1 illustrates this problem.
Considering a current position arrived at during the exploration, the user does
not know where interesting data could be located.

In this sense, navigating in an unknown graph to find interesting data is
often a tedious trial-and-error procedure. This prompted us to investigate some
kind of navigational guidance to interesting data. The aim of such a guidance
is to facilitate the user’s navigation decisions (i.e., recommend navigation to
interesting targets) and to mitigate the trial-and-error character of navigation
(i.e., minimize unconscious navigation through regions with uninteresting data).



2 Stefan Gladisch, Heidrun Schumann, Christian Tominski

Fig. 1. The problem of navigation. Given a partial view on a graph layout (center
rectangle) the user does not know where to navigate in order to find “interesting” data
(rectangles with question mark).

In the following, we present a novel data-driven approach for navigation rec-
ommendations to support the exploration of hierarchical graphs. In Section 2
we describe in more detail the problem we are dealing with and briefly review
existing state-of-the-art solutions. Section 3 introduces our novel approach, in-
cluding means to define what the user is interested in, to compute navigation
recommendations, and to communicate recommendations visually to the user.
A demonstration of the proof-of-concept implementation is given in Section 4.
Section 5 concludes our work and indicates directions for future work.

2 Problem Description and Related Work

Next we describe the problem addressed by our research, review existing work
that is related to this problem, and identify gaps to be filled with our approach.

2.1 Problem Description

We consider hierarchical graphs as input data. A hierarchical graph is defined as a
rooted tree whose leaves correspond to a graph at the finest level of granularity.
Nodes and edges of the graph may be associated with data attributes. Inner
nodes of the tree correspond to aggregations or abstractions of their associated
child nodes [1]. We assume that a suitable layout of the graph can be computed
with existing methods [6].

To allow users to explore the graph, its layout is visualized as a node-link
diagram that is embedded in a zoomable space. The zoomable space enables
what we call horizontal navigation: The user can pan to any rectangular partial
view of the graph layout. A hierarchical graph allows for additional navigation
on its hierarchical structure: The user can expand or collapse nodes in order to
get to a lower or higher level of abstraction [7]. We call this vertical navigation.
Figure 2 illustrates both types of navigation.



Navigation Recommendations for Exploring Hierarchical Graphs 3

Pan

Pan

Pan

Pan

Collapse Expand

Fig. 2. Navigation in a hierarchical graph. Horizontal navigation means altering the
partial view on the graph layout (e.g., by paning the view). Vertical navigation means
adjusting the level of abstraction (blue line) along the graph hierarchy by expanding or
collapsing individual nodes. (Colors visualize data attributes associated with nodes.)

One can easily imagine that the number of possible navigation steps is quite
large. Should I pan this direction or the other to find some high-degree node?
Which node should I expand to uncover a clique? Should I collapse these nodes to
catch sight of the maximum-value node? In fact, the user can derive some more
or less vague answers from the visual representation itself (e.g., navigate to where
many edges connect). But we argue that a dedicated support to assist the user
during navigation would be a promising addition to the user’s analytical toolbox.
With this thinking we are not alone, as documented in the next paragraphs.

2.2 Related Work

Looking at the literature one can find two categories of approaches to assist
users in navigating graphs. On the one hand, there are approaches that focus on
providing orientation help to keep users oriented. On the other hand, navigation
recommendation approaches aim to actually suggest navigation steps to the user.
In the following, we briefly review a few important examples.

Orientation help This kind of assistance helps users to orient themselves while
navigating through the data. In the context of graph exploration, May et al. [8]
present a technique that computes landmarks in the vicinity (context) of the
current partial view (focus). The visualization is enhanced with labeled signposts
that show directions to the determined landmarks. Jusufi et al. [9] investigate
orientation guidance in graphs for which a complete partition is given. The
approach is based on special glyphs that provide overviews of the subgraphs
connected to a focus node. Plaisant et al. [10] also use special glyphs for user



4 Stefan Gladisch, Heidrun Schumann, Christian Tominski

orientation. They enhance a tree visualization with preview icons that summarize
the topology of subtrees. From a more general perspective, we can also consider
off-screen visualization techniques (e.g., [11], [12], [13]) to be orientation help.

Navigation recommendations The main idea of navigation recommendations is
to suggest navigation steps (e.g., a specific target or a direction). Van Ham and
Perer [14] describe an exploration model for graphs that includes navigation
recommendations. Based on an initial focus, the approach computes and shows
the most interesting contexts. Visual hints help users to decide which nodes
in the context to expand in order to navigate to the additional information.
Crnovrsanin et al. [15] present a technique that recommends interesting nodes
based on a set of selected nodes. Interestingness of nodes depends on data at-
tributes, graph topology, and sequences of previous user interaction. Perer and
Van Ham [16] introduce querying and browsing as a new paradigm for graph ex-
ploration. They propose a general model that determines an initial focus and its
context on the graph based on a textual query. Special icons within a node-link
diagram recommend to the user where to browse the context in order to find
interesting information. Additionally, the approach computes and visualizes the
shortest path from a focus node to a recommended node in the context.

Open research questions The reviewed examples from the literature demonstrate
quite nicely how useful user assistance can be. A detailed look into the mech-
anisms behind the existing solutions reveals that most of them define a notion
of a current focus that is associated with a context, where focus and context
are defined exclusively on the graph structure. However, this implies that nav-
igation recommendation can be given only for entities being connected to the
focus in terms of the graph’s topology. Interesting but disconnected nodes (e.g.,
in graphs with disconnected components) cannot be recommended, even if they
are located close to the focus in the graph’s layout (which is what users see on
the display). Our novel solution addresses this limitation by utilizing a broader
and more general notion of focus and associated context.

Another aspect common to the reviewed solutions is that they address only
horizontal navigation in plain graphs. Hierarchical graphs have not been consid-
ered in connection with navigation recommendations so far. Our approach closes
this gap by including vertical navigation along the axis of the level of abstraction.
In other words, we address both horizontal navigation and vertical navigation.
The next section will introduce our approach for navigation recommendations
for hierarchical graphs.

3 Navigation recommendations for hierarchical graphs

As described earlier, the scenario is that users explore an unknown hierarchical
graph by means of a zoomable visualization that shows a layout of the graph
and an encoding of associated data attributes. Our goal is to support the user
in deciding which navigation step to take next to arrive at interesting data. To
this end, we need to address the following key issues:



Navigation Recommendations for Exploring Hierarchical Graphs 5

Determining recommendation candidates Given a hierarchical graph and
the current state of the visual exploration process we need to derive a set of
recommendation candidates.

Selecting interesting recommendations In order to compile a set of navi-
gation recommendations we need to rank the candidates according to their
interestingness and select those that are worth visiting next.

Communicating recommendations visually The selected navigation rec-
ommendations need to be communicated to the user in an unobtrusive fash-
ion with as little distraction from the actual visualization as possible.

Following this line of thinking, we will next describe in more detail how our
approach handles these issues. But first of all, we need to define what the targets
for navigation recommendations could be. In general, one could recommend nav-
igation to any entity related to a hierarchical graph, for example, nodes, edges,
connected components, cliques, or any other semantically meaningful subset of
nodes and edges. For the sake of simplicity, we restrict our considerations to
nodes as the targets for navigation recommendations.

3.1 Determining recommendation candidates

As commonly accepted, the starting point for determining candidates is the
user’s current focus. Based on the focus we define a context, which contains the
candidates. The context must include a sufficiently large number of candidates
to choose from, and it must be sufficiently small to stay focused and to avoid
computations on a huge search space. The size of the context and hence the
number of candidates is controlled by means of a distance measure. In summary,
we use three components: (1) a set of focus nodes to start with, (2) a sufficiently
sized set of context nodes – the candidates, and (3) a distance measure to control
the size of the context. Figure 3 illustrates how these components can be realized.

An intuitive and often used definition of these components is based on the
graph structure. A set of focus nodes is selected by the user, and the context is
defined by the k-neighborhood of the focus nodes. Here k is the parameter to be
adjusted to control the size of the context.

Graph structure Graph layout Data attributes Focus reflecting the current 
state of the exploration

Context containing
recommendation candidates

Entities not considered
as candidates

k-neighborhood

current view

view neighborhood

value range

Fig. 3. Different definition of focus and context in terms of the graph structure, the
graph layout, and the data attributes yield different candidates for recommendation.



6 Stefan Gladisch, Heidrun Schumann, Christian Tominski

As already indicated, we generalize focus and context to a broader defini-
tion. So, as a second facet, we additionally consider the user’s current view on
the graph layout. That is, all nodes that are currently visible on the display are
considered to be the focus. The context is again defined in terms of a neighbor-
hood, but this time a neighborhood in terms of the view space. The size of the
context is again controllable.

So far we have not yet taken into account the data attributes that might be
associated with the nodes. Consequently, we allow for a focus in attribute space.
This focus can be determined in different ways, for example by dynamic filtering
sliders or by fixing the value range of what is currently visible on the display.
The context can then be defined as a range of values enclosing the focus, where
the range’s size can be set as needed.

With this general definition we can better capture the different aspects being
relevant when exploring graphs – the graph structure, the graph layout, and the
data attributes. The broader definition also allows us to circumvent problems
that occur when considering either of the aspects alone. An example are nodes
that are close to the focus in the layout, but that are far away in terms of
the graph structure. In contrast to existing solutions, our approach is able to
recommend navigation to such nodes.

3.2 Selecting interesting recommendations

Given our definition of candidates in the context, the next step is to assign an
interestingness to each candidate. As we want to recommend interesting nodes to
navigate to, we need a concept that describes how interesting a recommendation
candidate is. Given the unpredictability of the visual exploration process, the
concept must be capable of handling varying interestingness.

An established and widely-applied concept is the degree of interest (DOI ),
a numerical interestingness computed by means of a DOI function. Originally,
Furnas [17] introduced the DOI for trees only. Van Ham and Perer [14] general-
ized it for graphs. Their weighted DOI function considers an a priori interest of
the nodes (API ), a distance to a focus (DIST ) and a user interest (UI ):

DOI(x, F, s) = α ·API(x) + β · UI(x, s) + γ ·DIST (x, F )

where x is the node to be assigned an interestingness, F is the current focus,
s are search criteria that describe what the user is currently interested in, and
α, β, γ are real-valued weights. With this DOI definition, we already have a quite
flexible mechanism to incorporate the user’s interest into the recommendation
computation.

Additionally, it can be important to know which data elements have already
been visited (i.e., have been visible or have explicitly been marked as explored) in
the course of the exploration. We propose to use an additional weighted KNOW
component for the DOI function that considers the interestingness of a node
according to its exploration state:

DOI(x, F, s) = α ·API(x) + β · UI(x, s) + γ ·DIST (x, F ) + δ ·KNOW (x)



Navigation Recommendations for Exploring Hierarchical Graphs 7

By considering the exploration state of a node, we can penalize already ex-
plored data or, on the contrary, favor them. Which option to use depends on the
user’s goal. Visited nodes can be considered less interesting because they do not
provide any new information. On the other hand, they could be particularly of
interest for comparison tasks.

Given our specification of the DOI function, the question that remains to be
answered is how to instantiate it and its components. We follow the accepted way
of previous DOI -related approaches and provide interactive means for the user
to specify and adjust the settings. To ease the specification procedure, we use
template functions that can be parameterized using classic GUI elements. Which
template functions to apply (i.e., what is interesting?) and how to parameterize
them depends on the application domain, the use case, and the analyzed graph.

Given an appropriate DOI specification, we compute the interestingness of
the nodes of a graph. It is worth mentioning that we do so only for the recommen-
dation candidates in the context of the current focus. This spares us computing
interestingness values for all nodes of the whole dataset.

For a hierarchical graph, we differentiate between two alternative ways of
computing the interestingness. The first is that we compute interestingness for
the finest level of granularity and aggregate interestingness along the hierarchy.
The second alternative is to compute interestingness explicitly for each candidate
irrespective of whether it is a leave node or an inner node. Again, the application
scenario and the nature of the data decide on which alternative to apply.

Now that every candidate has a DOI value they can be sorted according to
their interestingness. The result is a ranking of the recommendation candidates.
Since we only want to recommend the most interesting nodes, we choose the first
m nodes of the ranking as targets for the navigation recommendations, where m
should be kept small to avoid overloading the user with too many recommenda-
tions. From our experience with test datasets, we suggest recommending m < 10
interesting navigation targets.

3.3 Communicating recommendations visually

The last step is to create an adequate visualization for the navigation recom-
mendations. Given a potentially already visually rich graph visualization, how
can we enhance it in order to communicate navigation recommendations to the
users without interfering too much with the ongoing visual exploration? Our
answer to this question is to embed specifically designed visual navigation cues
into the existing node-link visualization. Depending on the type of navigation
and on where the target of a recommendation is located, we use different visual
cues. The type of navigation can be either horizontal or vertical.

Recommendation for horizontal navigation For horizontal navigation, we dis-
tinguish navigation to nodes that are on-screen and nodes that are off-screen.
Recommendations to on-screen nodes are visualized via subtle highlighting rings
that encode how interesting a node is according to its DOI value.



8 Stefan Gladisch, Heidrun Schumann, Christian Tominski

Arrow
Halo Wedge

Proxy
Enriched 
Wedge

Fig. 4. Techniques for recommending navigation to off-screen nodes. Green nodes are
on-screen, dashed elements are off-screen, and the red node is the recommend target.

For recommendations to off-screen nodes, we need a visual encoding that
communicates at least the target’s direction and better still, the distance to the
target as well. For this purpose, we consider known techniques for off-screen visu-
alization, such as arrows, halos [11],wedges [12], or proxies [13]. Arrows are easy
to interpret, but communicate navigation direction only. Halos and wedges have
the advantage that they encode direction and distance to a recommended navi-
gation target. Further, wedges can be arranged to reduced overlap [12]. Proxies
focus not so much on target distance, but more on communicating additional
information about the target by means of shape, color, or labels.

Inspired by these approaches, we designed a new solution that combines the
advantages of the existing ones. What we call enriched wedge is a visual cue that
encodes direction and distance, and also additional information about why the
recommendation was given. This is accomplished by embedding a bar chart into
a wedge. The wedge visualizes direction and distance, and each bar visualizes
the partial interestingness of a recommended node according to the individual
components of the DOI function (i.e., API, UI, DIST, KNOW ). Using enriched
wedges can positively influence the user in arriving at a navigation decision (i.e.,
choosing the “right” navigation target). Figure 4 illustrates the enriched wedge
in comparison to existing off-screen techniques.

Of course, the idea of enriching the navigation recommendations with a vi-
sualization of individual DOI values is not restricted to wedges pointing to off-
screen targets. The highlighting of on-screen targets can be enhanced in a similar
manner to provide information about interestingness at a glance.

Recommendation for vertical navigation A vertical navigation is necessary when
the recommended target is not contained in the currently visualized level of ab-
straction. As the target is definitely not visible, we need to pick a suitable anchor
to attach the navigation recommendation to. We decided to visually highlight
the nodes whose expansion (or collapse) would bring the recommended target to
the display. For example, if a target is below the current level of abstraction, we
highlight the target’s ancestor that is contained in the current level of abstrac-
tion and whose expansion will uncover the target. If the ancestor is off-screen
we can again apply one of the off-screen techniques described before.

In order to differentiate the highlighting for vertical navigation from that for
horizontal navigation, and further the one for node expansion from that of node
collapse, we resort to animated rings around nodes. In accordance with our goal



Navigation Recommendations for Exploring Hierarchical Graphs 9

Fig. 5. Snapshots of the animation that indicates nodes to be expanded to arrive at a
recommended navigation target.

to generate an unobtrusive visual embedding, the highlighting is designed as sub-
tly pulsing animations with a specific direction. The animated rings appear to
shrink when collapse navigation is recommended and to grow for recommended
expansion. Figure 5 shows snapshots of an animation indicating an expand rec-
ommendation.

3.4 Summary and additional concerns

With the aforementioned mechanisms, we can select interesting nodes and rec-
ommend them visually to the user as potentially worthy steps for navigation. A
key issue of our approach is balancing it appropriately. Interests vary and also
the visual presence of navigation cues will be perceived differently by different
users in different stages of the exploration process. Therefore, it is critical to
adjust the computation of recommendations and their visualization to the ap-
plication scenario and to the preferences of the user. Our approach provides the
required flexibility to do so. Further, we should recall the on-demand character
of our approach. That is, only if users feel that they need assistance they will
activate the navigation recommendations.

Two additional concerns need to be addressed in the context of navigational
guidance: (1) a good initial view to start with and (2) a visual encoding of the
exploration state. Both are not trivial question and we have not dealt with them
in depth. Yet we give some ideas how to address them.

Ideally, a good initial view on the data provides an expressive overview of
the data and offers a suitable number of options for further exploration. For
determining such an initial view, different criteria can matter. For example,
the number of nodes can be considered. Huang et al. [18] state that 20 to 100
nodes are suitable for an overview. Moreover, in specific applications, there may
exist data elements being semantically more relevant than others. In such cases,
including graph elements of higher relevance (e.g., outliers) can lead to a more
appropriate initial view. One could also favor nodes with high degree as they
potentially lead to more options for navigation along the graph structure. Despite
these initial suggestions, creating a good initial view remains a difficult and
largely context-dependent task.

The second concern regards the dependency of interestingness on the explo-
ration state. To make this dependency clear to the user it makes sense to visualize
a node’s exploration state as well, because it may influence navigation decisions.
When exploring hierarchical graphs the user might want to know which subtrees



10 Stefan Gladisch, Heidrun Schumann, Christian Tominski

have already been explored. Cramming this additional information into the visu-
alization as well is difficult. Therefore, we experimented with on-demand labeling
that classifies nodes into unexplored, partially explored, and explored. Such on-
demand labels can help users to decide where to explore further and where no
further exploration is necessary.

4 Proof-of-Concept Implementation

To test our approach, we developed a proof-of-concept implementation. As the
underlying zoomable graph visualization, we use the CGV system [4]. We im-
plemented a plausible default preset for the interestingness specification (includ-
ing maximum attribute values and attribute outliers), which enables us to give
recommendations at all times, even in cases where the user has not yet made
the interests known to the system. The DOI function and its components can
be altered interactively via a simple graphical user interface. We implemented
arrow-based recommendation cues and our enriched wedge.

We tested the system with several hierarchical graphs. Here we illustrate its
application with a graph that contains search queries as nodes and relations
between the queries as edges. The graph is of moderate size with 695 nodes and
4073 edges. Figure 6 shows a partial view on the graph as the user may see it
during exploration. Note that for the purpose of demonstration we use a visual
encoding that might not appear as gentle and subtle as one would use it in a
real application. In the figure, we can see recommendations to investigate on-
screen targets, indicated by red circles around some nodes. Enriched wedges at
the border of the screen recommend navigation to off-screen targets. Once the
user has decided on the next navigation target, it can be visited by following the
navigation recommendations manually. For example, the user can pan the view
in the direction of an enriched wedge until the target falls into view. The target
is then highlighted using the red circle for on-screen targets. As an alternative to

Fig. 6. Navigation recommendation in the proof-of-concept implementation. Red cir-
cles indicate on-screen targets worth investigating next. Enriched wedges indicate off-
screen targets that might be of interest to the user as well.



Navigation Recommendations for Exploring Hierarchical Graphs 11

manual navigation, we utilize CGV’s animation facilities to provide automatic
animated traveling to the selected target. To this end, the user simply clicks an
enriched wedge to trigger the animation.

During the exploration, the recommendations are constantly updated accord-
ing to the current focus and the specification of the user’s interest. The system
also keeps track of which nodes have already been visited, where we rely on users
explicitly marking a node as explored.

In summary, provided that users are able to express their current interest,
our implementation can help in locating interesting nodes in the local context
quickly.

5 Conclusion

In this work, we developed a data-driven approach for navigation recommen-
dations to interesting information. Our solution is based on three basic steps:
(1) collection of a set of recommendation candidates based on a compound fo-
cus, (2) selection of navigation recommendation based on user interests, and (3)
visualization of navigation recommendations via visual cues embedded into an
existing graph visualization.

Our solution extends the body of existing work in several aspects. We ad-
dressed hierarchical graphs, which require both horizontal and vertical naviga-
tion, an issue not studied in previous work. In terms of computing navigation
recommendations, we generalized the notion of focus and context to incorpo-
rate the graph structure, the graph layout, and the data attributes. Further, we
extended the widely-accepted DOI concept by the component KNOW, which
captures the exploration state of data elements. For communicating navigation
recommendations, we suggest several visual encodings, including the novel en-
riched wedge. A proof-of-concept implementation has been developed.

The mechanisms behind our concept work quite well in the proof-of-concept
implementation. However, in the future, we need to develop a better interface for
specifying the users’ interests. Our current approach with classic GUI elements
needs to be revised in order to make the overall solution more accessible for users.
Further it makes sense to keep a history of what users have already marked as
interesting. This would allow us to find better starting points for exploration.

A pressing issue is that the degree to which our solution reduces the trial-
and-error character of visual exploration has not yet been quantified. And un-
fortunately we believe that it will be hard to do so due to the many influencing
factors. Therefore, we invite evaluation experts to contact us and we will gladly
collaborate and provide our implementation for in depth usability studies.

Acknowledgements

This research has been supported by the German Research Foundation (DFG)
in the context of the project GEMS – graph exploration and manipulation on
interactive surfaces.



12 Stefan Gladisch, Heidrun Schumann, Christian Tominski

References

1. Herman, I., Melançon, G., Marshall, M.S.: Graph Visualization and Navigation
in Information Visualization: a Survey. IEEE Transactions on Visualization and
Computer Graphics 6 (2000) 24–43

2. Auber, D., Archambault, D., Bourqui, R., Lambert, A., Mathiaut, M., Mary, P.,
Delest, M., Dubois, J., Melançon, G.: The Tulip 3 Framework: A Scalable Soft-
ware Library for Information Visualization Applications Based on Relational Data.
Research Report RR-7860, INRIA (2012)

3. Mathieu, B., Heymann, S., Jacomy, M.: Gephi: An Open Source Software for
Exploring and Manipulating Networks. In: Proceedings of the International Con-
ference on Weblogs and Social Media (ICWSM), Association for the Advancement
of Artificial Intelligence (2009) 361–362

4. Tominski, C., Abello, J., Schumann, H.: CGV – An Interactive Graph Visualization
System. Computers & Graphics 33 (2009) 660–678

5. Spence, R.: Information Visualization: Design for Interaction. 2nd edn. Pear-
son/Prentice Hall (2007)

6. Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A Large Scale Graph
Visualization System. IEEE Transactions on Visualization and Computer Graphics
12 (2006) 669–676

7. Elmqvist, N., Fekete, J.D.: Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization
and Computer Graphics 16 (2010) 439–454

8. May, T., Steiger, M., Kohlhammer, J.D.J.: Using Signposts for Navigation in Large
Graphs. Computer Graphics Forum 31 (2012) 985–994

9. Jusufi, I., Klukas, C., Kerren, A., Schreiber, F.: Guiding the Interactive Exploration
of Metabolic Pathway Interconnections. Information Visualization 11 (2012) 136–
150

10. Plaisant, C., Grosjean, J., Bederson, B.: SpaceTree: Supporting Exploration in
Large Node Link Tree, Design Evolution and Empirical Evaluation. In: Proceedings
of the IEEE Symposium on Information Visualization (InfoVis), IEEE Computer
Society (2002) 57–64

11. Baudisch, P., Rosenholtz, R.: Halo: A Technique for Visualizing Off-Screen Ob-
jects. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), ACM Press (2003) 481–488

12. Gustafson, S., Baudisch, P., Gutwin, C., Irani, P.: Wedge: Clutter-Free Visualiza-
tion of Off-Screen Locations. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), ACM Press (2008) 787–796

13. Frisch, M., Dachselt, R.: Visualizing offscreen elements of node-link diagrams.
Information Visualization 12 (2013) 133–162

14. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Supporting
Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visual-
ization and Computer Graphics 15 (2009) 953–960

15. Crnovrsanin, T., Liao, I., Wu, Y., Ma, K.L.: Visual Recommendations for Network
Navigation. Computer Graphics Forum 30 (2011) 1081–1090

16. Perer, A., van Ham, F.: Integrating Querying and Browsing in Partial Graph
Visualizations. Technical report, IBM Research (2011)

17. Furnas, G.W.: Generalized Fisheye Views. ACM SIGCHI Bulletin 17 (1986) 16–23
18. Huang, M.L., Eades, P., Wang, J.: On-line Animated Visualization of Huge Graphs

Using a Modified Spring Algorithm. Journal of Visual Languages and Computing
9 (1998) 623–645


