Modern Interaction for Visual Analytics

Christian Tominski
Institute for Visual & Analytic Computing
University of Rostock
2021-07-01
From Data to Insight
Visual Analytics

Gain **insight** into large **data** to **understand** complex **phenomena**
Visual Analytics

• Interplay of:

 If answer can be computed, do:

 Computation

 If answer cannot be computed, add:

 Visualization

 If visual representations do not suffice, add:

 Interaction

Many real-world problems are here!
Visual Analytics

"Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces."

— Thomas & Cook, 2005
Interaction for Visual Analytics

Visual analytics loop requires **high degree of interactivity**

- **Direct manipulation** (Shneiderman, 1983)
 - Interaction directly with the visual representation
 - Physical actions
 - Constant visual feedback
- **Fluid interaction** (Elmqvist et al., 2011)
 - Promote flow
 - Keep users engaged
 - Immerse users in data analysis activity
Interaction for Visual Analytics

Standard approach
• Basic graphical user interface
• Standard mouse and keyboard interaction

Goals for modern approach
• Go beyond traditional interaction modalities
• Strive for in-situ interaction
• Reduce interaction costs
Outline

Modern interaction for Visual Analytics

1. **Exploration**
 - Physical navigation in front of display wall (Lehmann et al., 2011)
 - Tangible views above tabletop displays (Spindler et al., 2010)

2. **Adjustment**
 - Lenses for adjusting the visual representation (Tominski et al., 2017)
 - Responsive matrix cells for adjusting the data (Horak et al. 2021)

3. **Comparison**
 - Naturally inspired interaction for visual comparison (Tominski et al., 2012)
 - The CompaRing for cost-efficient visual comparison (Tominski, 2016)
Exploration

• Hierarchical graph
 • Multi-scale graph representation
 • Expand node to get more detail
 • Collapse sub-graph to abstract

• How to support exploration in modern VA environments?
 1. Large high-resolution display walls
 2. Tabletop surface displays
Physical Navigation in Front of Display Wall

• What
 • Hierarchical graph visualized on large high-resolution display wall
 • Utilize the space in front of display wall for interaction
 • Control level of detail/abstraction by moving toward or away from display

• Principle
 • Proxemic interaction: Spatial relationships (e.g., proximity, orientation) between objects utilized for interaction (Marquardt & Greenberg, 2015)

• How
 • Tracking system captures users position and head orientation
 • Subdivide interaction space into zones with increasing distance from wall
Physical Navigation in Front of Display Wall
Physical Navigation in Front of Display Wall
Tangible Views above Tabletop Displays

• What
 • Hierarchical graph visualized on tabletop display plus tangible views
 • **Tangible view**: display and interaction device at the same time
 • Control level of detail/abstraction by lifting and lowering tangible view

• Principle
 • **Tangible interaction**: Manipulation of tangible objects (Hornecker & Buur, 2006)

• How
 • Cardboard onto which visualization is projected
 • Cardboard tracked in the space above the tabletop display
 • Definition of interaction vocabulary
Tangible Views above Tabletop Displays

- **Interaction vocabulary**

 - **Translate**
 - Vertical
 - Horizontal

 - **Rotate**
 - Vertical
 - Horizontal

 - **Gesture**
 - Tilt
 - Shake

 - **Freeze**
 - Vertical
 - Horizontal

 - **Appearance**
 - Color
 - Shape

 - **Gesture**
 - Flip
 - Wipe
Tangible Views above Tabletop Displays

Hierarchical graph

Parallel coordinates

Space-time cube

https://www.youtube.com/watch?v=Pw-rINj2IAY
Outline

Modern interaction for Visual Analytics

1. **Exploration**
 - Physical navigation in front of display wall (Lehmann et al., 2011)
 - Tangible views above tabletop displays (Spindler et al., 2010)

2. **Adjustment**
 - Lenses for adjusting the visual representation (Tominski et al., 2017)
 - Responsive matrix cells for adjusting the data (Horak et al. 2021)

3. **Comparison**
 - Naturally inspired interaction for visual comparison (Tominski et al., 2012)
 - The CompaRing for cost-efficient visual comparison (Tominski, 2016)
Adjustment

• Adjust the visual representation
 • Use different visual encodings and different layouts to facilitate different tasks
 • **Example 1**: Interactive lenses

• Adjust the data
 • Correct wrong or missing values
 • Experiment with “what-if” scenarios
 • **Example 2**: Responsive Matrix Cells
Lenses for Adjusting the Vis. Representation

An interactive lens is a lightweight tool to solve a localized visualization problem by temporarily altering a selected part of the visual representation of the data.

— Tominski et al., 2017

ChronoLenses, Zhao et al., 2011
Sampling Lens, Ellis & Dix, 2006
Extended Excentric Labeling, Bertini et al., 2009
Lenses for Adjusting the Vis. Representation

Graph Lenses *(Tominski et al., 2009)*

[Image of graphs demonstrating the use of graph lenses]

[Link to Graph Lenses resource](https://tinyurl.com/GraphLenses)
Responsive Matrix Cells for Adjusting the Data

- **Data**: Structure and **attributes** of multivariate graph
- **Visualization**: **Matrix**
 - Lower triangular matrix: Edges (and weights) between nodes
 - Upper triangular matrix: Pair-wise node similarity based on attributes
- **Question**: How to access and edit attribute values?
Responsive Matrix Cells for Adjusting the Data

• **Approach:**
 • Focus+context resizing of cells
 • Embed views into matrix cells
 • Views respond to size changes
 • When there is enough space, *data values can be edited directly in the views*
 • Visualization updated on the fly

https://tinyurl.com/ReMaCe
Outline

Modern interaction for Visual Analytics

1. **Exploration**
 - Physical navigation in front of display wall (Lehmann et al., 2011)
 - Tangible views above tabletop displays (Spindler et al., 2010)

2. **Adjustment**
 - Lenses for adjusting the visual representation (Tominski et al., 2017)
 - Responsive matrix cells for adjusting the data (Horak et al. 2021)

3. **Comparison**
 - Naturally inspired interaction for visual comparison (Tominski et al., 2012)
 - The CompaRing for cost-efficient visual comparison (Tominski, 2016)
Comparison

• Among the most important tasks in Visual Analytics (Gleicher et al., 2011)

• General procedure
 1. Select objects to be compared
 2. Carry out visual comparison
 3. Understand data in context

• Examples:
 1. Naturally inspired interaction techniques
 2. Consideration of interaction costs

A > B ?
Naturally Inspired Visual Comparison

• How do people compare information in the real world?
Naturally Inspired Visual Comparison

- Replicate natural behavior as interaction techniques for visual comparison

https://www.youtube.com/watch?v=3qOMmX_Sk_Q
The CompaRing: Reducing Interaction Costs

Costs of visual comparison

1. Compile set of objects to be compared
 Costs for selecting objects

2. Carry out visual comparison
 Costs for moving eyes back and forth between objects

3. Understand details and context
 Costs for navigating between objects
The CompaRing: Reducing Interaction Costs

Combine interactive and automatic means

1. Semi-automatic selection of comparison candidates
2. Dynamic rearrangement of data objects to be compared
3. Navigation shortcuts for studying data in context
The CompaRing: Reducing Interaction Costs

Cost reduction

The user does not need to collect the relevant information, instead the system brings the information to the user!

https://tinyurl.com/CompaRingDemo
Outline

Modern interaction for Visual Analytics

1. Exploration
 - Physical navigation in front of display wall (Lehmann et al., 2011)
 - Tangible views above tabletop displays (Spindler et al., 2010)

2. Adjustment
 - Lenses for adjusting the visual representation (Tominski et al., 2017)
 - Responsive matrix cells for adjusting the data (Horak et al. 2021)

3. Comparison
 - Naturally inspired interaction for visual comparison (Tominski et al., 2012)
 - The CompaRing for cost-efficient visual comparison (Tominski, 2016)
Modern Interaction for Visual Analytics

• Take home
 • Interaction is a key component of Visual Analytics
 • Six examples of modern interaction for Visual Analytics
 • Flexible access to information directly where and when it is needed

• Future Work
 • Interaction across views and devices
 • Conflict-free integration of several interaction modalities
 • In-depth cost analysis of interaction
 • Toolkit support
 • ...
Read more!

https://ivda-book.de