CompaRing: Reducing Costs of Visual Comparison

Christian Tominski
Institute of Computer Science
University of Rostock
Costs of Visual Comparison

• Costs in visualization in general (Lam, 2008)
 • Costs related to visualization
 • Costs related to interaction

• Costs of visual comparison
 • Compile set of objects to be compared
 → Costs for selecting objects
 • Carry out visual comparison
 → Costs for moving eyes back and forth between objects
 • Understand details and context
 → Costs for navigating between objects
Visual Comparison Techniques

• **Visual comparison** (Gleicher et al., 2011)
 - Superposition
 - Juxtaposition
 - Direct encoding

• **Problems**
 - Visualization
 - Specific layout/encoding that suits comparison
 - But original layout/encoding is lost
 - Interaction
 - Static solutions with little interaction
 - Interaction costs hardly considered
Approach

• Dynamic on-demand comparison technique plus base visualization

• Design goals
 • G1: Relocate objects to reduce distance to make comparison easier
 • G2: Show residue of original objects to maintain context
 • G3: Encode object differences to further support comparison
 • G4: Cost-efficient interaction

• **Idea: CompaRing** Inspired by (Baudisch et al., 2003; Kahn et al., 2004; Moscovich et al., 2009)
 • Dynamic rearrangement
 • Automatic selection
 • Navigation shortcuts
Dynamic Rearrangement

• Arrange objects according to ring pattern (Draper et al., 2009)
 • Juxtaposition of objects being compared (G1)
 • Smooth animation so that user can see where objects come from (G2)

• Indicator arcs
 • Hint at original object position and distance (G2)
 • Direct encoding of differences (G3)
• Cost reduction: The user does not need to collect the necessary information, but the system brings the information to the user!
Automatic Selection and Navigation Shortcuts

Selection
- Classic selection
 - Manually mark n objects
- Automatic selection
 - Manually mark 1st object
 - Automatically compute and select the $n - 1$ most similar objects

Navigation
- Classic navigation
 - Manual zoom and pan operations
- Navigation shortcuts
 - CompaRing’s slots serve to trigger navigation
 - Automatic viewport animation

• Cost reduction: **Single click** vs. n clicks
• Cost reduction: **Single click** vs. repeated manual operations
Demonstration

• Proof-of-concept prototype
 • Zoomable choropleth map
 • Random data
 • Similarity based on Euclidian distance
 • http://goo.gl/AHwJkT

http://goo.gl/AHwJkT
Results

• CompaRing for assisting comparison tasks
 • Dynamic rearrangement
 • Automatic selection
 • Navigation shortcuts

• Proof-of-concept based on choropleth maps

Reduced cost of visual comparison
Future Work

• Empirical proof / quantification of cost reduction
 • Controlled study

• Alternative layouts
 • Spirals, matrix, screen border, ...
 • Force-based implementation

• Generalization
 • Visualization techniques (e.g., map + multivariate glyphs, node-link diagram)
 • Visualization environments (e.g., display wall, touch surface)
The End

• Thanks!
• Questions?

• http://goo.gl/AHwJkT
Notes on Evaluation

• Previous studies on visual comparison
 • Comparison can be easier for objects being close to each other
 (Larsen and Bundesen, 1998; Plumlee and Ware, 2006)
 • Should be true for CompaRing, but controlled study needed

• Preliminary feedback
 • Informal hands-on session with visualization experts
 • Generally positive feedback
 • Comments and suggestions
 • Alternative ordering of slots: Slot position corresponds to object direction
 • Encoding of indicator arcs: Narrow means close vs. narrow means remote
 • Occlusion: Dim CompaRing during automatic navigation (already implemented)