Interaction Support for Visual Comparison
Inspired by Natural Behavior

Christian Tominski1, Camilla Forsell2, Jimmy Johansson2

1 University of Rostock, Rostock, Germany
2 Linköping University, Norrköping, Sweden
Motivation

• How to compare patterns in tabular visualization?
 – Procedure:
 • Navigate to pattern A
 • Store A in short-term memory (STM)
 • Scroll to another pattern B
 • Compare B to mental image of A
 – Ineffective and error-prone

• Goal: Better support for comparison tasks
Related Work

Comparison in visualization:

- Survey* lists more than **110 references**
- Mostly **visual** solutions (special layouts, visual encoding)
- No general solution, but **limited** to specific data / techniques

*Munzner et al., 2003 Holten & van Wijk, 2008 Tominski et al., 2008 Jiang et al., 2008

Approach

Develop **general solution** by approaching the problem from a different angle!

Focus on **interaction**!
Get inspiration from **natural** behavior!
Natural Comparison

Inspiration from **natural behavior** of people comparing information printed on paper

Novel Interaction Approach

Imitate the natural comparison workflow and environment

- Virtual workspace and supplementary tools
 1. Specification of comparison objects
 2. Arrangement to suit comparison
 3. Resolving of occlusion to facilitate comparison

Design goals: natural, fluid*, supportive, general

* Elmqvist et al.: Fluid Interaction for Information Visualization, 2011.
Virtual Workspace

• Combine* zoomable 2D space with multiple views

• Plug in any visualization
 – Table
 – Node-link
 – Scatter plot matrix
 – ...

• Classic interaction

* Plumlee & Ware: Zooming versus multiple window interfaces: Cognitive costs of visual comparisons, 2006.
1. Flexible Specification

- **Select** region of interest
- **Create** new view from ROI
 - Extract information from parent view (image data or raw data)
 - Detach fully-fledged view
- **Collect** views in a hierarchy
 - Maintain parent-child relationship
 - Keep views in front of parents
 - Help users keep track of views
2. Interactive Arrangement

• **Relocation** of views to suit comparison
 – Translate, (scale, rotate, ...)

• **Alignment** tools to aid in relocation
 – Snapping to grid, (objects, features, ...)

Comparison arrangements
 – **Juxtapose**: No occlusion, but eyes need to move frequently
 – **Superimpose**: Only little eye movement required, but occlusion
3. Resolving Occlusion

• **Shine-Through**
 – Alpha-blending of superimposed views

• Easy and intuitive, but merging of graphical information
3. Resolving Occlusion

• **Folding**
 – Peel off occluding view*
 – Uncover information under cursor
 – **No corner-grab**, but simple heuristic to compute the folding

• Easy and intuitive, but collateral occlusion

3. Resolving Occlusion

- **Folding**
 - Balance information richness, naturalness, and occlusion
 - Different folding styles
Supporting Tools

– Reduce interaction costs: shortcuts **Go-To** and **Bring-In**
– Offload cognitive costs to verbal memory*: view **annotation**
– Maintain orientation: indicate **origin** of views
– Explicitly encode differences: similarity **LEDS**

* Plumlee & Ware: Zooming versus multiple window interfaces: Cognitive costs of visual comparisons, 2006.
Demo

• Prototype implementation with table visualization
• Available at: http://goo.gl/LwREL
Evaluation

• User study with 18 participants
• Three different visualizations: table, matrix, NodeTrix
• Think-aloud and questionnaire

• **Positive feedback**
 – “Better than natural”
 – “Feels realistic”
 – “Very harmonic”

• **Negative feedback**
 – “Folding too flexible”
 – “Snapping only on demand”
 – “When to use which?”
Summary

• Novel interaction approach
 – Generally applicable to many different visual representations
 – Support for all types of comparison*: superposition, juxtaposition, and explicit encoding
 – Easy to learn and enjoyable to use

• Future work
 – Better support finding and creating candidates (e.g., dynamic queries)
 – Automatic arrangement based on similarity
 – Which interaction for which visual encoding and which task?

Thanks Camilla and Jimmy!
Thanks Falko Löffler!
Thank you for attending!