Event-Based Visualization for User-Centered Visual Analysis

Christian Tominski
University of Rostock
November 8th, 2006
Classic vs. Event-Based Visualization

<table>
<thead>
<tr>
<th>Classic Approach</th>
<th>Event-Based Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Aspects</td>
<td></td>
</tr>
<tr>
<td>Visualization transformation</td>
<td>Event Representation</td>
</tr>
<tr>
<td></td>
<td>Event Detection</td>
</tr>
<tr>
<td></td>
<td>Event Specification</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Related work
• Classification schema for event-based visualization
• General model for event-based visualization
 1. Event specification
 2. Event detection
 3. Event representation
• Applications
Motivation

• Challenges:
 – Large data sets lead to cluttered and overcrowded visualizations
 – “Gap between what is being shown (…) and what actually needs to be shown (…)” (Amar & Stasko, 2005)
 – Different users and different data aspects require flexible visualizations

• Goal: Effective, relevant, and flexible visualization
Related Work

Events used in a variety of ways with a variety of meanings:

- Modeling and Simulation
- Knowledge Discovery
- Artificial Intelligence
- Software Engineering
- Databases
- ...
Related Work

- Reinders et al., 2001
- Matković et al., 2002
- Erbacher et al., 2002
- Kranzmüller, 2002
- Coupaye et al., 1999
- Chittaro et al., 2003
Classification Scheme

<table>
<thead>
<tr>
<th>Event Complexity</th>
<th>Simple Events</th>
<th>Composite Events</th>
<th>Mined Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. 3. 4. 5. 8.</td>
<td>6. 7.</td>
<td>1. 9.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Specification</th>
<th>Visualization Designer</th>
<th>Events Detected from Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visualization User</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. 2. 3. 4. 5. 6. 7. 8. 9.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Integration</th>
<th>Event Data Only</th>
<th>Events and Input Data separately</th>
<th>Events Detected from Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. 6. 7. 8.</td>
<td>4. 5.</td>
<td>1. 2. 9.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual Event Representation</th>
<th>Implicit</th>
<th>Explicit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. 3. 5.</td>
<td>1. 3. 6. 7. 8.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporal Characteristics of Data</th>
<th>Static Non-Temporal Data</th>
<th>Static Temporal Data</th>
<th>Dynamic Non-Temporal Data</th>
<th>Dynamic Temporal Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. 3. 4. 5. 6. 7. 8. 9.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporal Characteristics of Event Representations</th>
<th>Static Representation</th>
<th>Dynamic Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. 4. 6. 7. 8. 9.</td>
<td>2. 3. 5.</td>
</tr>
</tbody>
</table>
Event-Based Visualization

1. Users specify interests as event types
2. Detect actual occurrences of events
3. Create visual representations that highlight events

Getting the user involved!
Formal Event Definition

- Event domain
 - Entity
 - Event domain: ED
 - Entity domain: ed

- Event types
 - Abstract event type
 - (event types compatible with ED)
 - Event types: ET
 - Event type: et

- Event parameters
 - Event instance: E

- What can be of interest?
- What makes an entity interesting?
- Which entity is interesting?
New General Model

1. Event Specification → Event Types
2. Event Detection → Event Instances
3. Event Representation → Actions / Processes

Raw Data → Event Data → Visualization

Data Analysis → Filtering → Mapping → Rendering → Image Data

Explicit
Implicit
Event Specification

Challenge: Bridge gap between computer (formal machine) and user (informal interests)

• Formal description: **Event formulas** based on PL
 – Data model: Relational data
 – Syntax: Variables as placeholders for entities, predicates, functions, aggregates, logical connectors, quantifiers

• Event types:
 – Tuple and attribute event types (based on PL)
 – Sequence event types (based on (Sadri et al., 2004))
 – Composite event types (based on set theory)
Event Specification

User-centered event specification

Event formula

Direct specification

Event type template

Parametrization

Event type collection

Selection

User

Specification efforts

high

low
Event Specification

Visual event specification

• **Brushing:**
 – Direct interaction with visualization
 – Limited to scope of data set

• **Visual editor:**
 – Visual interface to abstract formalism
 – Arbitrary event types
 – Limited by “Deutsch Limit”

Hauser et al., 2002
Event Detection

- Task: Find actual event instances
- Realization: Variable substitution, formula evaluation
- **Event instance**: \(e = (\text{entity, event type, parameters}) \)

Detection process:
- **Static data**
 - Events detected in preprocess prior to visualization
- **Dynamic data**
 - Detect events whenever data changes
 - Detection efficiency becomes an issue
Event Detection

Improving event detection efficiency

• Database technology:
 – Map event formulas to SQL queries
 – Apply algorithms with proved efficiency (e.g., (Sadri et al., 2004))
 – Incremental detection methods

• User-centered event detection:
 – Narrow search space: Users less/not interested in “old” events
 – Heavily dependent on application context
Event Representation

• Task: Guide attention to interesting parts of visual representation

• Requirements:
 – Communicate the fact that something interesting has occurred
 – Emphasize on event instances in visual representation
 – Convey the types of occurred events
Implicit Event Representation

- **Goal:** Adaptation of known visualization techniques
- **Challenge:** Find suitable parameters to adapt
- **Principle:** Actions (instantaneous) or processes (gradual) realize parameter changes
 - Data analysis: Clustering, smoothing, ...
 - Filtering: Selection, projection, neighbors, ...
 - Mapping: Geometry, attributes (e.g., color), layout
 - Rendering: Viewpoints, depth of field, importance-driven rendering
- **Effect:** Local vs. global changes in visualization
Explicit Event Representation

• Goal: Visualize events, rather than data
• Challenge: Find expressive event attributes
 – Event type (categorical value)
 – Time, space, ...
• Principle:
 – Map events and their attributes to new relational data set
 – Use dedicated techniques to represent event data (e.g. space-time-paths)
eVis Framework

1. Data Import
 - Data Interface
 - CSV File
 - SQL Query Result
 - ...
 - Raw Data

2. Management
 - Data
 - Event Types
 - Users

3. Graphical User Interface
 - Event Specification
 - Event Type Interface
 - XML Schemas
 - Visual Editor
 - ...

4. Event Detection
 - Event Instances

5. Event-Based Visualization
 - Visualization Interface
 - TableLens
 - VisAxes
 - TimeMap
 - ...

6. Interests

7. Data Flow
 - Event-related flow
 - User control flow
Event Integration in VisAxes

- **No events considered**
- **Events automatically emphasized**

[Visualization diagrams showing various techniques such as Influenza, Rotation, Brushing, and Focusing]
Events in Time and Space
Events and Graph Visualization

- Specify event types via filter interface
- Focus on interesting nodes via lenses
Results

- Classification scheme for event-based visualization

- **New general model for event-based visualization**, including event specification, event detection, and event representation

- Proof of concept:
 - Events for relational data model
 - Extensible framework for event-based visualization
 - Application of event-based concepts to graph visualization
Results

Event-based visualization can help to generate effective, relevant, and flexible visualizations that shift the interests of users into the focus!
Future Work

• Event specification
 – Further and improved event types
 – Enhance event specification

• Event detection
 – User-centered event detection
 – Incremental methods
 – Special kinds of data (e.g., data streams)
Future Work

• Event representation:
 – Analyze perceptual issues
 – Conduct user studies
 – Make event representation as flexible as event specification

• Further aspects:
 – SVG/X3D and Active Databases
 – Mobile devices
Thank you!
Event-Enhanced TableLens

No events considered

The latest event is automatically focused
Interpretation of Event Instances

Attribute event, tuple event, and sequence event occurred in a relational dataset.

Attribute event interpretation

Tuple event interpretations

Sequence event interpretations

(a) A_1 A_2 A_3

(b) A_1 A_2 A_3

(c) A_1 A_2 A_3

(d) A_1 A_2 A_3

(e) A_1 A_2 A_3

(f) A_1 A_2 A_3
Predicates for Event Specification

- $eq(x, y)$
- $po(x, y)$
- $ec(x, y)$
- $dc(x, y)$
- $tpp(x, y)$
- $ntpp(x, y)$
- $tppi(x, y)$
- $ntppi(x, y)$

- $equals(x, y)$
- $before(x, y)$
- $during(x, y)$
- $meets(x, y)$
- $starts(x, y)$
- $finishes(x, y)$
Event Formula

\[\{ \dot{x} | \dot{x}.\text{AvgTemp} < 0 \} \]

```
SELECT *
FROM data
WHERE AvgTemp < 0
```