Supporting Visual Parameter Analysis of Time Series Segmentation with Correlation Calculations

Problem statement: Identify parameters and parameter values that strongly influence the segmentation of time series

Approach: Computing and emphasizing correlations between parameters and outputs

Determining Correlations

1. **Feature vectors** to characterize each segmentation output by
 - Number of segments \(c \) for each segment type \(S_1 \ldots S_n \)
 - Average segment length \(l \) for each segment type \(S_1 \ldots S_n \)

2. **Correlation calculation** between parameters and components of the feature vectors
 - Pearson correlation coefficient
 - Subspace search to identify correlations in subsets of the segmentation outputs
 - Dynamic programming to ensure efficient calculations

⇒ Correlation values signify parameter dependencies

Correlation Visualization

Emphasizing Dependencies:
 - Sorting of rows by involved parameter values and by output similarity
 - Lowering the saturation and dimming of uninvolved segments

⇒ Parameter Space Analysis

Parameter Analysis

Input \(x \) \(\Rightarrow \) (Feature Vectors \(\{ F_1, F_2, F_3 \} \)) \(\Rightarrow \) Parameters \(\{ P_1, P_2, P_3 \} \) \(\Rightarrow \) Output \(\{ O_1, O_2, O_3 \} \)

Interactive Exploration

User interface:
 1. Sorted list of correlations.
 2. Involved parameters and segmentation types to filter displayed correlations.
 3. Visualization of parameters and segmentation outputs.
 4. List of segmentation types.

Exploration strategies:
 - **Parameter first**: Selection of filters (2) is used to show only correlations (1) of a certain parameter (or segmentation type). This helps users to visually investigate (3) the influence of selected parameters.
 - **Segmentation first**: The visualization (3) is used to manually selected regions and segment types (4) with interesting observations. Only correlations with matching segments are shown (1) to explain the observations.

Christian Eichner, Heidrun Schumann and Christian Tominski

Institute of Computer Science | University of Rostock, Albert-Einsteinstr. 22 | 18055 Rostock, Germany