INTERACTIVE VISUAL EXPLORATION OF SIMULATOR ACCURACY:
A CASE STUDY FOR STOCHASTIC SIMULATION ALGORITHMS

Martin Luboschik, Stefan Rybacki, Roland Ewald, Benjamin Schwarze,
Heidrun Schumann, Adelinde M. Uhrmacher
University of Rostock
BACKGROUND / MOTIVATION

Stochastic (Spatial) Simulation (in Cell Biology)
BACKGROUND / MOTIVATION

Stochastic Simulation

SSAs:
- exact ones like Next Reaction Method: slow
- non-exact like tau-leaping: speed vs. accuracy
BACKGROUND / MOTIVATION

Stochastic Simulation

Accuracy depends on:
- parameters, simulation model, goal of study
BACKGROUND / MOTIVATION

Stochastic Simulation

Accuracy depends on:
• parameters, simulation model, goal of study
BACKGROUND / MOTIVATION

Stochastic Simulation

[Diagram showing a graph with a curve and a point labeled 'A']
BACKGROUND / MOTIVATION

Stochastic Simulation
BACKGROUND / MOTIVATION

Stochastic Simulation
BACKGROUND / MOTIVATION

Stochastic Simulation

Parameters
BACKGROUND / MOTIVATION

Non-exact Stochastic Simulation

Stochastic Simulator

Parameters

+ Accuracies along each trajectory
VISUALIZATION REQUIREMENTS

Stochastic Simulator

Parameters

+ Accuracies along each trajectory
VISUALIZATION REQUIREMENTS

- show the data
- relate accuracies to data
- guide to desired accuracies
- feedback into parameter space

+ Accuracies along each trajectory
VISUALIZATION APPROACH

- show the data
- relate accuracies to data
- guide to desired accuracies
- feedback into parameter space

1 configuration
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

1 configuration
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

1 configuration with α accuracies
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

n configurations with 1 accuracy
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

n configurations with 1 accuracy
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

n configurations with a aggregated accuracies
VISUALIZATION APPROACH

• show the data
• relate accuracy to data
• guide to desired accuracies
• feedback into parameter space

a histograms of aggregated accuracies
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

p parameters
VISUALIZATION APPROACH

- show the data
- relate accuracy to data
- guide to desired accuracies
- feedback into parameter space

\[p \text{ parameters and } a \text{ aggregated accuracies} \]

\[a_1, a_2, a_3, a_4 \]
VISUALIZATION DEMO
VISUALIZATION DEMO

Linear Chain System, 601 species, 50 s simulation time, 10,000 S_0, S_{25}, 500 time points, 1000 replications, 2200 different configurations
CONCLUSION

• Combined visualization of
 • simulation output
 • accuracies
 • parameters

• Independent of model and (non-exact) SSA

• Adaptable to different accuracy-measures and even beyond

 supports exploratory determination of parameters for further use
OUTLOOK

- Integration of metadata (e.g. execution time) and further species
- Comparison of different configurations
- Advanced sorting, statistics, clustering
THANK YOU!
QUESTIONS?