Visualizing Uncertainty in Biological Expression Data

Clemens Holzhiiter®, Alexander Lex?, Dieter Schmalstieg?,
Hans-Jorg Schulz?, Heidrun Schumann® and Marc Streit®

®University of Rostock, Department of Computer Graphics, Rostock, Germany;
bGraz University of Technology, Institute for Computer Graphics and Vision, Graz, Austria;
¢Johannes Kepler University Linz, Institute of Computer Graphics, Linz, Austria

ABSTRACT

Expression analysis of ~omics data using microarrays has become a standard procedure in the life sciences.
However, microarrays are subject to technical limitations and errors, which render the data gathered likely to
be uncertain. While a number of approaches exist to target this uncertainty statistically, it is hardly ever even
shown when the data is visualized using for example clustered heatmaps. Yet, this is highly useful when trying
not to omit data that is “good enough” for an analysis, which otherwise would be discarded as too unreliable
by established conservative thresholds. Our approach addresses this shortcoming by first identifying the margin
above the error threshold of uncertain, yet possibly still useful data. It then displays this uncertain data in
the context of the valid data by enhancing a clustered heatmap. We employ different visual representations for
the different kinds of uncertainty involved. Finally, it lets the user interactively adjust the thresholds, giving
visual feedback in the heatmap representation, so that an informed choice on which thresholds to use can be
made instead of applying the usual rule-of-thumb cut-offs. We exemplify the usefulness of our concept by giving
details for a concrete use case from our partners at the Medical University of Graz, thereby demonstrating our
implementation of the general approach.
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1. INTRODUCTION

Uncertain data plays an increasingly important role in many application fields, as it becomes apparent that data
of a borderline quality poses risks and offers chances at the same time. The risks are the ones associated with
erroneous data, which may lead to potentially fatal conclusions, and the chances are those that lie in data which
may not be perfect but good enough to potentially lead to a scientific break-through. Especially in a critical
area such as biomedicine, where data errors can have fatal consequences, it is common to set rather conservative
thresholds, discarding any data that is too uncertain and also some more, just to be on the safe side. Yet, in
most cases this procedure will dispose of too much of the data, as data values right above the error threshold
still hold the chance of being useful at a second glance. It is this borderline data that we term wuncertain, and
which describes the application-dependent and task-dependent margin between valid data and invalid data.

We strive to make the user aware of this interval of uncertainty, to allow him to explore it, and thus to
make an informed interactive decision on where to put the cut-off threshold. Specifically, we do so for heatmap
visualizations of ~omics (e.g., genomics, proteomics, metabolomics) data derived from microarray experiments!
— in our case for gene expression data, even though our solution can be applied to many kinds of ~omics data
sets. A gene’s expression determines how much of a gene’s functional products (mostly proteins) are being
produced at a certain time in a specific tissue sample. This information is mainly of value when compared
to other tissue samples, acquired either at another time, or taken from other organs or patients, for example.
Comparing multiple “snapshots” of gene expression lets scientists reason about the causes or consequences of
any observed changes. Gene expression heatmaps are an important tool for this analysis, but an integration
of uncertainty information is so far largely unexplored. This may be due to the complexity and diversity of
uncertainties in expression data, whereby uncertain data values can stem from a diverse set of sources:
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e from data acquisition — e.g., introduced by the signal processing and given as a signal-to-noise ratio,

e from data transformation — e.g., generated by post-processing steps, such as statistical tests comparing
different experiments and given in the form of p-values, and

e even from the wvisualization itself — e.g., produced by overplotting, where heatmap cells get drawn on the
same pixel.

In this paper, we target all these types of uncertainty, which often occur in combination, and propose solutions
to allow users to decide, how certain a data value has to be in order to include it in an analysis. An integration
of these solutions along the lines of Shneiderman’s Visual Information Seeking Mantra? ensures that the entire
visual analysis workflow is covered. Our main design decision was to not invent new visualizations, as it is
important to utilize the standard representations already offered in the application, in order to provide familiar
handling and keep the learning curve low.? Instead, we chose to alter and enhance the clustered heatmap to
provide the necessary uncertainty information directly within or alongside the heatmap.

2. RELATED WORK

One of the first definitions for uncertainty was given by Hunter* as a: “...lack of knowledge about the amount
of error [which] is responsible for hesitancy in accepting results and observations without caution.” In general,
uncertainty is mostly described as a composite of different concepts, such as errors, accuracy, and subjectivity.®
These types of uncertainty have been summarized by Skeels et al. in the form of a three-level uncertainty
classification, which distinguishes measurement precision from completeness issues such as missing values,
and higher order uncertainty implied by modeling assumptions and termed inference. Other sources propose
uncertainty levels that are more closely related to the common visualization pipeline. For example, Wittenbrink
et al.” list three sources of uncertainty in data, namely: data acquisition, data transformation, and vi-
sualization. Besides differing in terms of their sources, uncertainties can also be differentiated by their types:
statistical uncertainty and bounded uncertainty.® The former is given by a distribution with an infinite
tail that encodes the most likely value measured for a data point, yet it cannot completely eliminate the small,
but nevertheless still existing probability that the actual value is completely different. The latter gives a definite,
bounded interval in which the value is guaranteed to lie.

Visualizing bounded uncertainty is usually done by enlarging each data item in a plot to occupy the said
interval on the value axis. This results for example in a linechart fanning out if the interval and thus the
uncertainty gets larger, as it can be observed in the uncertainty visualization approaches by Streit et al.” For
statistical uncertainty, statistics provides a large number of plots, which can be used to visualize it. Common
examples of such statistical plots are boxplots, Range Plots, and histograms.'® Overall, it is nowadays established
to visualize the uncertainty of the data alongside the data itself.'!* For such an integrated visualization, a
number of approaches are established, such as glyphs or animation/blinking.'? Especially the field of geospatial
visualization has developed a wide array of techniques to embed and show uncertainties directly on the map.!3
Griethe et al.? finally present a general approach on how uncertainty can influence a visualization on the different
stages of the visualization pipeline.

In biomedical applications, uncertainty plays an immensely important role, as experimental error tends to
affect the data.'* Yet, this importance is so far not reflected in biomedical visualization. While there are
plenty of statistical methods to deal with errors and establish sensible thresholds describing when to consider
data as sufficiently certain,'® they tend to be considered separately from the actual visualization. Data, which
is not certain enough, is simply not passed on to a subsequent visualization and thus missing. Hence, efforts
are called for to alleviate this situation and provide visual representations for biomedical data capturing their
inherent uncertainty.'® Current research endeavors in this direction tend to focus on medical applications, such
as diagnosis and surgical procedure planning, in which complications can rise due to uncertainty.'”

For uncertain expression data and its visualization, the situation is very similar: there exist a number of
very sophisticated statistical methods to deal with uncertainties, such as Pearson et al.’s puma package for
Bioconductors,'® yet so far no integrated visualization method is known. We have explored some first ideas
for heatmap visualizations of expression data and uncertainties in a poster presentation in 2010.'° This paper
describes solutions developed from these first ideas.



3. CONCEPTIONAL APPROACH TO VISUALIZE UNCERTAIN DATA

In order to make use of uncertain data instead of disregarding it, our approach consists of three rather straight-
forward steps, which are necessary to make an informed choice on a threshold as motivated in the introduction:

1. identification of uncertain data between an upper and lower threshold,
2. visualization of this uncertain data in the context of the certain data, and
3. variation of the thresholds between valid, uncertain, and invalid data.

Each of these three steps is introduced and discussed on a general level in the following as well as detailed and
exemplified in Section 4.

3.1 Identification of Uncertainty in Expression Data

Gene expression data can be described as tabular data forming a matrix M with a set of genes G (or proteins
in case of protein expressions) as rows and a set of experiments E as columns. A cell (¢,j) € M contains thus
the expression value of the i-th gene in the j-th experiment. The typical heatmap H precisely reflects this data
setup by assigning each matrix cell M (i, j) a corresponding cell H(i,j) in view space and color-coding the gene
regulation value onto it. Here, green indicates downregulated genes, black an intermediate regulation, and red
indicates upregulated genes. Common expression data sets have up to several thousand genes and a few dozen
replicated experiments, leading to a rather narrow but high heatmap.

Errors resulting in uncertain data are introduced in a variety of ways. To identify them, we adopt the
approach of Wittenbrink” who considers different uncertainty sources along the data processing workflow. So we
can identify and estimate/quantify the uncertainty independently for each step of the workflow and then in turn
use it to determine its mentioned upper and lower threshold. The different error sources are described below.

By data acquisition: As any experimentation, the procedure of microarray experiments, as well as the digi-
talization and quantification of the experiment results, are inherently error-prone. This error of data acquisition
can be measured by different means, ranging from single measures, such as the signal-to-noise ratio (SNR), to
more complex aggregates of multiple measures, such as the Quality Control Score defined by Wang et al.?0 All
of them have in common that they yield a local error quantification, which is defined per cell. To account for
such errors, it is common practice to design experiments so that biological replicates can counter-balance this
effect. Nevertheless, a conservative threshold separating the valid from the invalid cells does not only lead to the
elimination of a few extra measurements, but to the omission of entire genes.

By data transformation: Additional errors may get introduced when data is processed. A typical example
for this is an aggregation or averaging of multiple replicated experiments, commonly used to even out fluctuations
of measurements and data acquisition errors. Yet, if the individual replicates differ too much, there is a high
likelihood of a more serious flaw in the data, which would be hidden by averaging. This considerably impairs
the validity of a subsequent gene expression analysis. Hence, statistical tests are used to compare the results
from replicated experiments, and the error is then given in the form of a resulting confidence interval. These
relative error measurements do not allow to reason which of the two replicates is the faulty one. Again, applying
conservative thresholds on the confidence may lead to discarding potentially useful genes.

By visualization: This last kind of error is introduced by graphical artifacts that occur for example when
trying to displaying more data than there are pixels available (overplotting) or when using 3D graphics with
its natural limitations (occlusion, perspective distortion, etc.) While 3D heatmaps do exist — see for example
the ViGeCo tool?! — they are rarely used in day-to-day gene expression analysis, making overplotting the main
concern for large heatmaps. For its quantification, a few measures exist, which work on a per-pixel basis, e.g.,
Ellis’ and Dix’?? overplotted% or Tufte’s?® Data-Ink-Ratio or Data Density. Yet, while the data density is the
same for every part of a heatmap, information density is not: if two nearly identical rows get overplotted, half
of the data but nearly no information is lost. We accommodate for this important distinction by proposing a
new way of computing the visual uncertainty in terms of this notion of information loss: we scale up the shown
overplotted heatmap to the size of the original unhampered heatmap H having one pixel per heatmap cell and
compute their pixel-to-pixel differences. Thus, when both images are identical, because no overplotting occurred



or only identical rows were overplotted and thus no information was lost, there are no differences between both
images. But when two differing cells are overplotted, scaling up this overplotted heatmap and comparing it with
the original one allows for detecting this information loss.

Interestingly, for all three classes of error, their lower limits, meaning the threshold between valid data
and uncertain data, can be defined relatively straightforwardly. For errors in signal processing and image
acquisition, there exist thresholds that reflect the commonly achievable measurement precision and which where
thus established as a quasi standard. An example for such a common threshold is a SNR of 3, even though
more fine-grained measures and more precise thresholds have already been proposed.?* The same holds true for
statistical testing, where confidence intervals are defined by setting the cut-off for the p-value to 0.05 as a rule
of thumb, which is proven to work well.2> As for the visualization error, the lower threshold at which the view
is definitely valid is the point where no overplotting occurs and each data item is individually visible.

More complicated is the upper error limit, beyond which data is definitely considered invalid and no longer
uncertain. The need for upper thresholds is reflected in some publications, where they are used to separate true
negatives from false negatives.?% Yet, they are far less common and there are usually no established values for
them. Until such values are established the biomedical expert has to set these upper limits manually according
to his experience with the used lab equipment and other factors that are hard to generalize. Examples for upper
limits used by the experts involved with our use case are given in Section 4.

3.2 Visualization of Uncertain Expression Data

Before visualizing the data, it is sensible to discard all invalid data items (genes) which are beyond the upper
error thresholds and thus are definitely of no use. Hence, only the valid and the uncertain data are displayed in
the following. When communicating uncertainty in the data, three aspects are important:

e qualitative aspect: making the user aware that data is affected by uncertainty
e quantitative aspect: showing the extent of the uncertainty affecting the data
e provenance aspect: indicating which error(s) in the data have lead to its classification as uncertain

Besides these aspects regarding the uncertainty in the data, it is also mandatory to faithfully display the actual
underlying data, as its uncertainty is merely secondary information. To make it easier for biomedical experts
to make use of our visualization approach, a central design decision is to preserve the overall look & feel of
the standard clustered heatmap display for the actual values and add the uncertainty information onto it. For
visualizing larger heat maps we use an overview and a separate detail view. While the overview always shows
the whole valid data set, we split the overview into disjoint clusters (this follows the assumption that heatmaps
are only valuable when the data is clustered). The detail view shows only the values belonging to one of the
clusters. To make it obvious which cluster from the overview is shown in the detail, we use ribbons to connect the
cluster and the detail view. In general, our approach enhances heatmaps by supplying additional information
per row in an attached extra column at the left of the heatmap. This fits well with the overall layout of a
heatmap, which usually extends more in the vertical direction than it spreads out horizontally. In contrast to
other uncertainty visualization techniques, it also uses reordering of the rows of the heatmap to subtly encode
their relative uncertainty in their position without changing the overall form of the heatmap.

Overview: The overview aims to give a complete view of the potentially very large data set. It provides
only a low granularity, which precludes the mapping of detailed uncertainty values. For the visual encoding
of the uncertainty in the overview, we distinguish between visual uncertainty, which by design occurs only in
the overview, and data uncertainty (summarizing both data acquisition and data transformation uncertainties).
We encode the uncertainty using row-wise barplots, where a high bar indicates a high uncertainty. Figure 1(a)
illustrates the two barplots side by side: on the far left in purple, the encoding for the visual uncertainty is
shown. To its right, in orange are the plots for the data uncertainty, and next to it, the actual overview of the
heatmap clusters.

Additionally to the encoding using barplots, the rows are sorted, so that all uncertain rows are placed together
in one region of the heatmap. This is possible, as the actual order of rows within a heatmap is not fixed. In the
case that clusters must be kept together, the sorting is done locally for each cluster. Furthermore, sorting is a



OVERVIEW DETAIL VIEW

Heat Map
of Cluster 1

h II.
II. Data

Uncertainty
Plot

Cluster 1

FILTER PIPELINE

Selected
Row

Cluster 3

Visual Data
Uncertainty Uncertainty Heat Map
Plot Plot

0 10

100 1000

(a) (b)

Figure 1. The overview and detail view of our uncertainty visualization approach for heatmaps are shown in (a). The
purple barplot indicates the visual uncertainty due to overplotting, the orange barplot the maximum acquisition or
transformation uncertainty. In the detail view, no overplotting occurs and thus no visual uncertainty is shown. On
demand more information is shown for selected rows in the detail: the extent of the individual uncertainties, as well
as from which cell they originate by desaturating the cells according to their uncertainty. The filter pipeline concept is
illustrated in (b) with three different filters set to individual thresholds. It gives information on how many items have
been discarded as invalid and how many are classified as uncertain by the current cut-offs. The colors of the filters in the
pipeline correspond to the colors of the bars in the detail row in (a), so that they can easily be identified and matched.

necessity, as within the overview, rows are heavily overplotted, because the available screen space is insufficient
to assign each row at least a single pixel line within the heatmap. This massive overplotting would completely
disguise individual uncertain rows in the heatmap, and the user would not be aware of them, until he zooms in.
Yet, when sorting all uncertain rows into the same region, they can still be identified — at least in bulk — when
being collapsed into a single line of pixels.

Due to the space limitations of the overview and the data density being already very high for the scaled down
heatmap, the provenance aspect is not encoded in it, but can be viewed on demand in the detail view.

Detail view:  As this view shows only a selection of rows from the overview (usually a single cluster), it offers
enough space to not only eliminate visual uncertainty by overplotting, but also to display additional uncertainty
information for each row in the heatmap. This additional information is mostly concerned with the provenance
aspect that tells why exactly a row of the heatmap exhibits uncertainty. The detail view gives this information
on two levels of granularity: per row and per cell.

The display per row is a rather seamless extension of the barplot on the side of each row in the overview. It
splits up into multiple bars per row — each one detailing one of the different error sources, of which there can
be multiple per class, such as different acquisition errors and different transformation errors (illustrated in the
third row from the bottom in Figure 1(a)). The interval, in which the bars are shown, is exactly the interval of
uncertainty. No visible bar means here that the error value is at least as low as the lower error threshold below
which all data is assumed to be valid. Whereas a full bar means the error is close to the upper error threshold
above which all data is assumed to be invalid. This indicates to the user which error(s) render a row uncertain
and how much the conservative error threshold must be raised, so that a row would be considered valid and be
included in subsequent analytics.

In order to identify which cell(s) of a row are responsible for a row’s overall error, further details can be
brought up on demand. Selecting a row results in an enlargement of the selected element, where the certainty
on a cell level is encoded using saturation. Since we have multiple levels of uncertainty, the uncertainty that
contributes the most to the entire row’s uncertainty (and therefore corresponds to the highest bar for the row)
is chose by default. Exploring the cell-wise uncertainties for the other levels can be achieved by clicking on the



corresponding bar, upon which the saturation is calculated based on the uncertainty of the cells for the selected
level. This way, an error value close to the validity threshold would leave the color of the heatmap cell almost
untouched, whereas an error value close to the invalid region would white-out the cell completely. Being able to
investigate the concrete source of an uncertainty in this way is very valuable: If, for example, many genes are
highly uncertain and it turns out that this uncertainty stems in all cases from a single faulty replicate, it would
make sense to exclude this one faulty column instead of many rows.

3.3 Variation of the Uncertainty Thresholds for Expression Data

This last part of our approach goes beyond the pure communication of the uncertainty, its underlying error
sources, and the concrete measurement it stems from. It allows the user to interactively adjust the thresholds
used for classifying the data into valid, uncertain, and invalid. It is carried out directly within the diagram of the
filter pipeline used for the error handling. This pipeline is shown in a separate but linked view, which extends
our interactive filter pipeline?” — see Figure 1(b). It depicts the thresholds, as well as in which order they are
applied, and how many genes are classified as valid or uncertain in each of the filtering steps. Manipulating the
thresholds by sliding them up or down renders more rows valid or uncertain respectively, and visual feedback is
given by reordering the rows of the heatmap accordingly. In this way, after investigating the heatmap and its
associated uncertainty, the biomedical expert can readjust the threshold for each error source according to his
findings. This can be done by either including more genes than were originally deemed valid by the conservative
threshold, or maybe even excluding more genes in the case of overall imprecise measurement results due to
experimental conditions.

While this filtering method covers adjustments in the data space with respect to acquisition and transforma-
tion errors, zooming allows the user to also manipulate the uncertainty in view space. As the user controls the
generation of the visualization, he does not have to stop at the level of adjusting a threshold for what is still
acceptable, but can instead reduce the error source of overplotting by zooming into the heatmap and thus giving
more space to a region of interest. The effect of zooming into the overview is directly reflected in the barplot
display, where the visual error plays a decreasing role for the overall uncertainty as the user zooms in — all the
way to the detail view where no more overplotting occurs.

Together with the overview and the detail view, these filter and zoom mechanism form an approach that
covers Shneiderman’s mantra and can also be used in its spirit starting from the overview, applying zoom and
filter, and retrieving details on demand. This is exemplified for a concrete use case in the following section.

4. USE CASE

For this case study we collaborated with our partners from the Medical University in Graz. They are interested
in explaining differences between two genetic variations of mice: one shows symptoms when exposed to poison,
while the other variation does not. The symptoms are similar to a well known disease in humans, so that they
speculate that the genetic susceptibility might have similar causes in mice and in men. To find out about the
activity of the mice’s genes, they conducted gene expression microarray experiments at different points in time (0
days, 7 days, and 8 weeks). Each experiment was repeated three times in order to account for both: measurement
errors and individual traits found in only one of the mice.

Identification of uncertainty: The expert starts his analysis by loading the data set, which consists of the
actual expression values and a signal-to-noise ratio for each value. Since an analysis based on too noisy data is
invalid, typically those values with a signal-to-noise ratio of 3 or less are filtered.2* Data above this threshold
is considered certain. By not strictly removing those values, but instead specifying a lower bound, the expert
can extend the data to be considered for an analysis significantly. However, the data, which lies between these
bounds, is uncertain to varying degrees, thus introducing the first level of uncertainty.

To first find the genes which change in expression, fold-change filters are applied. Again, an established
threshold of a 3-fold change marks the border to certain values, while genes in that 2-fold to 3-fold change region
can be considered uncertain. By setting such a fold-change filter for both genetic variations of mice, the second
and third level of uncertainty is introduced.
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Figure 2. A screenshot of the entire system showing overview (left), detail view (right), and the filter pipeline (bottom)
in our implementation.

After the user has set the limits that define the valid, uncertain, and invalid intervals for all levels of un-
certainty, the invalid genes are filtered from the data set. The remaining set of certain and uncertain genes is
then visualized as a heatmap. The overview visualization also introduces the visual uncertainty, measured by
the amount of overplotting and weighted by the spread of the overplotted values. This way, an upregulated
expression (red) overplotting a downregulated expression (green) results in a higher visual uncertainty than
overplotting matrix cells with similar expression.

After identifying the different sources of uncertainty and before the user can start the actual analysis, he
runs additionally a partitional clustering on the data, as otherwise the 14,500 genes in the data set are hard to
overview. Interactively interwoven visualization and clustering techniques, such as the Matchmaker,?® can help
to find a good clustering, which partitions the data well. Figure 2 shows the resulting heatmap, which reflects
the generated clusters in its overview representation.

Overview visualization of uncertainty: By inspecting the overview, the user gets a feeling for the data set
itself as well as the contained uncertainty. Initially, the user judges the quality of the resulting clusters. Usually,
a high quality clustering yields homogeneous clusters. If this is not the case, this might be an indication for a
non-optimally chosen cluster algorithm or additional settings like the distance measure. In case the user is not
satisfied with the clustering result, he can re-run the algorithm with altered settings. The plots attached to the
left hand side of the heatmap in the overview show the visual and data uncertainty, see Figure 3.

Plotting the overall data uncertainty for each row in sorted order yields curves of different shape and form
for each cluster. For our use case, the most interesting shapes are those that are concave and have a long tail,
as for example in the fifth cluster from the bottom in Figure 2. This means that for this particular cluster,
uncertainty above the threshold does not increase drastically. Instead, the uncertainty grows very slowly and
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Figure 3. The overview of a single cluster rendered at two different zoom levels. The plots visualizing the visual uncertainty
and the data uncertainty are attached on the left of the heatmap. The visual uncertainty plot in (a) indicates a strong
variation within a particular gene’s expression and serves as a pointer for further investigation on a closer zoom level or
within the detail view, thereby exposing an inhomogeneous area within an otherwise homogeneous cluster. (b) shows the
same cluster as (a), but rendered on a bigger portion of the screen. Now, the downregulated genes (green) that caused
the peaks are clearly visible in the heatmap.

has a dramatic increase only at the end. Clusters exhibiting such a distribution of uncertainty are most likely
to contain a number of genes that are just marginally more uncertain than those below the error threshold and
are thus good candidates to be included with the data.

The visual uncertainty plot is a valuable feature for the discovery of outliers in the clusters that are otherwise
not visible in the overview due to the information loss introduced by overplotting. Peaks in the plot indicate
sub-regions or single outliers that cannot be detected in the overview heatmap because of the aggregation of
multiple expression values to a single pixel. A zoom feature allows the user to investigate what data in the
cluster causes the peaks. The visual uncertainty is recalculated on the fly when the size of the rendered overview
changes. Reasons for this are a zoom action or the resizing of the window. Figure 3 shows the overview at two
different zoom levels for the same cluster, so that the effect of zooming on the visual uncertainty is clearly visible.
In addition to the zoom feature, the user can always select the cluster to inspect its data in the detail view.

Variation of uncertainty: The heatmap in the overview enhanced with the uncertainty of each row already
gives a good enough impression for adjusting the threshold if necessary. To that end, the filters that were used
on the data are shown in their order of application in a linear pipeline, which can be seen at the bottom of
Figure 2. It does not only depict how many genes are left after each filter operation, but also how many of
them are uncertain with respect to each filter. This makes it clearly visible, which filter would discard (too)
many uncertain values and may thus give leeway to adjust the threshold accordingly. The adjustment of the
thresholds can be done interactively and is guided by a histogram indicating exactly how many items get included
or eliminated by raising or lowering the thresholds, respectively. After a change has been made to the thresholds
in the pipeline, it becomes mandatory to re-cluster the newly filtered data set, as additional or missing data
items may have an influence on the clustering result. This readjustment of the thresholds can be applied as often
as necessary, until good cut-off values are found for each filter. In general, it makes sense to only alter one filter
at a time and then evaluate the outcome, as otherwise the effects of multiple adjustments mix and it becomes
hard to discern which threshold adjustment was responsible for a certain outcome.

For manipulating the uncertainty thresholds on the data, a proxy such as the pipeline view is needed to
interact upon. In contrast, the visual uncertainty can be manipulated directly by zooming in or out of the
overview. The higher the zoom level, the fewer data items must be displayed on the screen, leading to reduced
overplotting, and hence the visual uncertainty drops. This effect is also visible in Figure 3, where the visual
uncertainty (purple barplot) is significantly lower overall for the zoomed-in figure than for the zoomed-out figure.



Detail visualization of uncertainty:

As the user selects an interesting cluster, its content is presented in a larger detail view for further inspection.
Since visual uncertainty does not longer occur, only data uncertainty is visualized left hand to the heatmap.
A fish-eye enlargement affects not only the selected, but closer rows within a small range as well. Within this
range all data uncertainty barplots are fragmented into multiple sub-bars, making it obvious from which source
the uncertainties in the selected area are coming from. These sub-bars can be individually selected to show the
amount of individual uncertainty in each experiment for the selected gene, revealing weather all experiments or
only one outlier was responsible for the gene to be uncertain. This is achieved by desaturating the cell color
to white, to accentuate highly uncertain experiments. As shown in Figure 2, the selected row yields multiple
highly uncertain experiments for the first uncertainty source, identifying it for an invalid gene. To easier pinpoint
interesting sections from the overview within the detail, e.g., the source of a high visual uncertainty peak, the user
selected row is marked within the overview with a blue line. The obligatory labeling of genes and experiments
are also provided within the detail view. Due to the amount of genes, labels are only shown for genes which are
part of the fish-eye selection.

The proposed uncertainty visualization concept is realized as a part of the Caleydo information visualization
framework??*. Caleydo is written in Java and uses the Java OpenGL binding (JOGL) for rendering.

5. CONCLUSION

Our approach proves to be highly flexible, as it enables the user not only to pursue the task we have mainly
focused on — the minimization of false negatives — but also to target a number of other interesting questions.
The most obvious is probably its ability to minimize false positives, in case of a too optimistic error threshold.
A scenario, in which this has to be done, would be the identification of conjectured cancer patients, which is also
determined from gene expression profiles. To be on the safe side, in this scenario the threshold is set optimistically
for determining patients who are possibly affected to rather include more results from uncertain genes than to
miss out on one. Here, our method can be applied to cut down on the false positives by raising the threshold
instead of lowering it, after investigating a patient’s gene expression in a heatmap. This can be achieved with the
same setup. It would merely be the workflow that changes, as now, for instance, the convex uncertainty curves
are of interest, which signal a high overall uncertainty and thus genes which should potentially be dismissed and
not be incorporated in the profiling.

Another interesting question, which can be explored with our method, is how many and which of the error
sources must actually be included to yield a representative overall uncertainty. This is hard to answer in general
and depends a lot on the actual data, for which a potentially large number of uncertainties can be measured and
derived by considering additional error models or simply performing the same statistical test with varying subsets
of data. Since the filter pipeline also allows the user to set error thresholds all the way to the maximum value,
which corresponds to not applying a threshold for a given error at all, error sources can thus be interactively
incorporated or excluded from the overall filter. Investigating the changing effect of switching filters on and off
is a powerful exploratory tool for the user to get an understanding of which error sources actually affect the data
and thus the outcome of the expression analysis. Knowing the important error measures can reduce the cost of
experimentation, as no longer the whole range of possible errors has to be measured, and also the preprocessing
time, as probably only a few statistical tests are meaningful and thus needed.

A last problem would be to not only find the right error measures, but also the appropriate order in which to
consider them. For example, many measures are based on statistical properties of the data set they are computed
for. Hence, it is important whether one measure is computed first and used to filter the data set before another
measure is computed and used for subsequent filtering, or the other way around. Our approach permits to alter
the order of the filters by dragging axes onto different positions — very much like a parallel coordinates plot does.
This way, different orders of filters can be tried and explored for their effects to the clustered heatmap.

Overall, these points illustrate the adaptability and usefulness of our approach, as it apparently does not
only cover the specific use case of our collaboration partners, but also a wider range of questions associated with
uncertainty in expression data. Hence, in future work we will expand our approach into these other application

*http://www.caleydo.org



scenarios, which will hopefully further illuminate the aspect of uncertainty in data and visualizations, as well as
its role in visual analysis of biological data.

One particular interesting concrete idea to follow up on is aimed to make additional use of visual uncertainty:
By using the calculated information loss it is feasible to develop heterogeneity-driven distortion techniques for
the detail view, which only shrink homogeneous regions of the visualization to a degree that directly correlates
to their homogeneity — similar to the approach used by Oelke et al.3° Furthermore, it is also possible to combine
this approach with user-defined importance weights for different features of the data. These importance weights
could be assigned with respect to the task at hand, e.g., for the identification of differently regulated genes,
equally regulated genes could by shrunk or vice versa. This approach can be applied locally by using distortion
lenses, or globally to provide a compact overview.
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