A Generative Layout Approach for Rooted Tree Drawings

Hans-Jorg Schulz*
University of Rostock

ABSTRACT

In response to the large number of existing tree layouts, generic
“meta-layouts” have recently been proposed. These generic ap-
proaches utilize layout design spaces to pinpoint a tree drawing with
desired characteristics in the wealth of available drawing options
and parameters. While design-space-based generic layouts work
well for the confined set of implicit space-filling tree layouts, they
have so far eluded their extension to explicit node-link diagrams.

In order to produce both, implicit and explicit tree layouts, this
paper parts with the descriptive nature of the design spaces and in-
stead takes a generative approach based on operators. As these op-
erators can be combined into operator sequences and be used at
different stages of the layout process, a small operator set already
suffices to yield a large number of different tree layouts. To this
end, we present a generic tree layout pipeline and give examples
of suitable layout operators to plug into the pipeline. A prototypi-
cal implementation of our pipeline and operators is presented, and
it is illustrated with space-filling and node-link examples. Further-
more, the paper presents results from a user study evaluating our
generative approach as it is realized by the prototype.

Index Terms: 1.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation

1 INTRODUCTION

Tree drawings are a standard diagram type that common visualiza-
tion tools are expected to support. Yet, tree drawings subsume an
entire family of diagrams with more than 250 variants of them [23]
that can be generated through a variety of different algorithmic ap-
proaches [17, 22]. So on the one hand, the implementation of a
substantial number of different layout algorithms is necessary to
provide users with common layouts to draw their hierarchical data.
On the other hand, a user’s individual needs can hardly ever be ful-
filled as each new hierarchical dataset may require a new layout
approach for its adequate representation.

To counter this problem, more generic layout approaches have
recently been proposed. They are able to produce a variety of con-
crete tree layouts according to their parametrization. While some-
times not explicitly stated, the existing generic layouts all rely on an
underlying design space, whose dimensions are independent design
decisions to be made and the value instances at each dimension are
the concrete design choices available for a design decision. The so
far existing generic tree layouts are in chronological order:

e Slingsby et al.’s Hierarchical Visualisation Expressions [26]
(6 design dimensions, called appearance operators),

e Schulz et al.’s design space of implicit tree visualization [25]
(4 design dimensions), and

e Baudel and Broeksema’s design space of sequential subdivi-
sion techniques [3] (5 design dimensions).

*e-mail: hjschulz@informatik.uni-rostock.de
fe-mail: mzakbar @ucalgary.ca
*e-mail: frank. maurer @ucalgary.ca

Zabedul Akbar'
University of Calgary

Frank Maurer®
University of Calgary

Design spaces allow users to describe the desired output through
a set of design decisions, but rarely permit to influence the process
that generates the result. To automatically derive a layout proce-
dure from the design decisions made, the design dimensions have
to be independent of one another. While this is still possible for
subclasses of tree layouts, it gets harder the more degrees of free-
dom one wants to capture in such a design space. That is why all of
the existing generic approaches consider implicit layouts at most.
While design spaces for general tree layouts have been proposed,
none of them can practically be used to automatically derive con-
crete and possibly novel tree drawings from them. For this, they
are either not fine-grained enough (e.g., the 3 design dimensions
utilized in [14]) or their design choices are no longer independent
(e.g., the 12 design dimensions proposed in [10]). The latter leads
to the situation that design choices become intricately linked with
one depending on another or even contradicting each other. These
dependencies are far too complex to be automatically resolved and
thus cannot serve as a basis for a generic tree drawing algorithm.

Therefore in this paper, we do not burden ourselves with a de-
sign space and take a different approach by focusing only on the
functional aspects that actually generate tree drawings. As a result,
our approach trades in the insights, which a complete and consistent
design space can yield, for the prospect of “getting the job done”
and producing a large variety of different rooted tree layouts. To
achieve this, we rely on functional building blocks, which we call
layout operators in accordance with the aforementioned existing
generic approaches that all rely on operators as well. Yet, we go be-
yond the existing approaches by considering operators not as being
independent (as a design space would require) but as being strung
together in a sequence that captures the actual layout process in a
layout pipeline. By performing different layout operations at differ-
ent stages of this pipeline, different layouts are produced — implicit
space-filling layouts and explicit node-link layouts, likewise.

Fulfilling the requirements outlined in Section 2, the layout op-
erators and the layout pipeline form the main contribution of this
paper as described in Section 3. We have further implemented a
prototype of the pipeline, as well as a number of operators to be
used with it. We describe this implementation and examples of its
use in Section 4. In addition, we conducted a qualitative evalua-
tion of our approach by means of a user study with our prototype.
Our findings and observations from this evaluation are described in
Section 5, before concluding this paper in Section 6.

2 REQUIREMENTS FOR A GENERIC TREE LAYOUT

Despite its perceived simplicity, the tree layout process is neither
self-evident nor self-explanatory, if considered in general. There
are many visual features to be captured by a generic layout, while
the procedure to capture them should not be overly complex. For
design spaces, these two aspects translate to the requirements of
completeness (capture all possible layouts) and consistency (a few
independent design dimensions). As the related work has shown
them to be hardly achievable for general tree layouts, we make con-
cessions to both by requiring only to capture a large part of the com-
monly used, canonical tree layouts with just as much specification
complexity as is needed to do so. After surveying the wealth of ex-
isting layouts, we found that the majority of standard tree drawings
can be generated, when the following set of layout requirements is
fulfilled:

root-centric parent-centric hybrids (per row)

explicit

implicit

hybrids (per column)

Figure 1: Radial examples for the different layout requirements
LR1-LR3 and their interplay.

[LR1] It must be possible to create both, implicit space-filling
layouts and explicit node-link layouts.

[LR2] It must allow for generating root-centric layouts (all layout
operations are made w.r.t. the tree’s root), as well as parent-centric
layouts (all layout operations are made w.r.t. a node’s parent).

[LR3] It must support not only one global layout for the entire
tree, but be able to locally assign different layouts in order to create
hybrid tree representations combining different layouts.

These three requirements are schematically depicted in Figure 1,
illustrating them and their interplay to give an impression of the
diversity of layouts that can be produced if all three requirements
are fulfilled. We bound the necessary specification complexity to
handle this diversity and to pinpoint a concrete layout among the
many possible ones by defining three requirements for the layout
specification as well:

[SR1] The specification should be as concise as possible. It should
only require a few specification actions or operations, which are
taken from a small set of possible layout operations.

[SR2] Creating the layout in different traversal orders, i.e.,
top-down (starting from the root) or bottom-up (starting from the
leaves), should not require different ways of specifying them.

[SR3] The individual specification operations should be agnostic
to the concrete underlying geometric shape, instead of each shape
coming with its own operations.

While there are certainly more points one could wish for in a
generic tree layout, we deem these the most important for our gener-
ative layout approach, which is introduced in the following section.

3 A TREE LAYOUT GENERATION APPROACH

The above requirements state what a generic layout approach
should be able to do, but not how to do it. Taking a closer look
at existing tree layouts, we ground our approach on two fundamen-

tal observations — the first concerning the tree drawings, the second
concerning the layout processes that generate them:

e In many cases, there exists a duality between implicit space-
filling layouts and explicit node-link layouts. This duality is
already exploited by individual tree layout algorithms, but has
so far not been used to bring together these two layout styles
in one common layout procedure.

e Despite the large variety of tree layouts, many of them follow
a similar overall layout process that can be captured in six
individual layout stages.

The following section shortly discusses these two observations and
derives first design decisions from them, before we describe our
approach in detail, as it is built on these decisions.

3.1 Fundamental Design Considerations

The duality between implicit and explicit tree layouts has been
observed before [24]. In short, it means that implicit layouts can be
transformed into explicit ones and vice versa. For implicit layouts,
this transformation is done by simply rendering the nodes as dots
inside the constructed areas and connecting them with edges for an
explicit look and feel. Tree layouts that make use of this transforma-
tion are, for example, the Space-optimized tree [20] or RINGS [28].
They internally perform a space-filling subdivision approach, but
render the result as explicit node-link diagrams. Whereas for ex-
plicit layouts, the transformation can be performed by merely ren-
dering the areas around the laid out nodes for an implicit look and
feel. Tree layouts that make use of this transformation are, for ex-
ample, the Voronoi Treemap [2] or the Contour Map [16]. They in-
ternally perform a node placement and then construct areas around
the placed nodes to get an implicit space-filling layout as result.

To fulfill requirement LR1, our generic layout approach uses
the first of these two transformations: Internally, it perceives all
tree layouts as implicit and assigns drawing areas rather than point
positions to the nodes of a tree. This choice makes sense, as the
transformation from implicit to explicit is not only computationally
less expensive, but this way our approach can also build upon the
existing work on generic implicit tree layouts.

The six stages of the layout process permit a high-level dif-
ferentiation between the intent with which different operations are
carried out during layout generation:

initialization for supplying the initial drawing space;
traversal for moving up or down in the tree;
preprocess for preparing the nodes to be laid out;
prelayout for preparing the drawing area for layout;
allocation for assigning drawing space to the nodes;

. postlayout for final beautification of the layout result.

kW - o

The very same layout operation performed at different stages of
the layout will yield very different results, as it is exemplified in
Figure 2 for a small nested Treemap-like layout.

(a) Scaling during Prelayout (b) Scaling during Postlayout

Figure 2: Scaling on different stages of an inclusion-type layout.
(a) scales down the dark parent rectangle first and then subdivides
it, while (b) performs the subdivision first and scales each of the
three resulting rectangles afterwards. This yields different results,
with (a) emphasizing the sibling relation much more than (b) does.

Our generic layout approach uses this workflow of six stages as
a fixed layout pipeline, in which Stage 0 is only invoked once,
whereas Stages I through 5 are repeatedly passed through for each
level of the tree. This helps to fulfill requirement SR1 by hiding
most of the housekeeping functionality, such as data management
and tracking the layout dimensions, and leaving only these stages
exposed for customization with a few layout operators. The layout
pipeline and its six stages are described in the following section.

3.2 The Tree Layout Pipeline

Tree layout procedures differ in whether they traverse the tree top-
down or bottom-up. Since we consider all layout generation as
implicit, we can make use of the observation from [25] that states
the main distinction between the two is a subdivision layout for top-
down traversals vs. a packing approach for bottom-up traversals.
To be able to use the proposed layout pipeline of six stages for both
types of traversal, as required by SR2, we make use of a particular
data structure that is able to accommodate both.

We partition the tree in its individual levels L;, where d denotes
the depth of a level. Each level consists of a set of tuples of the
general form ({s;},{n;}). The first element of these tuples contains
geometric shapes s; C RY™ with dim € {2,3} — e.g., rectangles
or circles in 2D, or cuboids or spheres in 3D. The second element
contains the nodes of the tree that are associated with the geometric
shapes. Shapes and nodes can be thought of as objects that inter-
nally hold a number of properties. Shape properties are their posi-
tion, their extent, and their orientation. Nodes contain information
about their parent, as well as a number of numerical attributes, such
as the number of children and siblings, the depth, and the Strahler
number [1]. The tuples can occur in three different variants:

e 1 shape, n nodes: Such a tuple holds the initial state of a top-
down, partitioning layout. The multiple nodes are siblings.
The singular shape encloses the drawing space assigned to
the parent of the multiple nodes. For such tuples, the layout
algorithm should distribute that space among the nodes.

e m shapes, 1 node: Such a tuple holds the initial state of a
bottom-up, packing layout. The multiple shapes belong to
the children of the singular node. For these tuples, the lay-
out algorithm should tightly pack the shapes and assign the
bounding shape of the packing result to the parent node.

e 1 shape, 1 node: Such a tuple holds the end result of a suc-
cessful layout. Whether it was generated top-down by parti-
tioning a single into multiples shapes or bottom-up by packing
multiple into a single shape, in the end each node is assigned
its individual shape.

This transition from (1,n)/(m,1)-tuples into (1,1) tuples is per-
formed along the different stages of our layout pipeline. Each lay-
out stage can be viewed as an iterator over all tuples ¢ in L;, which
applies a set of layout operations to . The layout pipeline is it-
eratively passed through until all nodes have been assigned their
individual shape. For both, top-down and bottom-up traversal, we
describe a full pass through the layout pipeline in the following,
detailing the changes that each stage makes to L;. A schematic
overview of the entire process is given in Figure 3.

3.2.1 Top-Down Traversal

Stage0: initializationisapreparatory stage that defines the
shape of the root node for its subsequent subdivision in the layout
process. It can be customized to transform the usually rectangu-
lar initial drawing space into an initial shape as it is expected by
the following layout. Common uses are radial layouts with angular
subdivision that expect a circular space, or layouts that grow out-
wards and thus require a down-scaled initial space, so that they do
not exceed the available overall space during layout.

The Principal State forms the defined starting point for the layout
of each level L;. It consists of a set of (1,1)-tuples. This is by
definition true for the root level L after initialization and it must
be true for the result of Stage 4 that assigns each node its own
shape. The just laid out child nodes are now considered parents
themselves and passed as an input to the following traversal to
retrieve their children for laying out the next level.

Stage 1: traversal is fixed to a top-down DESCEND. It takes
the current level L; and advances it to Ly, by composing a new
tuple for each existing one. First, the new tuples contain a copy $),
of the parent shape s,. This makes sure that all subsequent steps
do no longer manipulate the parent shape s, itself, but the one in
which the children are to be laid out. Second, the newly created
tuples contain the set of children {n.j,n,...} of the respective
parent node {n,}. If L; | = 0, the layout process terminates.

Stage 2: preprocess adapts the set of nodes of each tuple for
its subsequent layout. This can be, for example, a sorting operator
or a weighting operator. The latter multiplies a numerical attribute
of a given node with a weight. Depending on this weight, the size
of the later assigned space will be either smaller or larger than it
would otherwise have been. It can thus be seen as a scaling on
data level. This is particularly important for space-filling layouts in
which scaling up a node in view space after the space allocation
would result in overlap and thus overplotting.

Stage 3: prelayout adapts each tuple’s drawing space. This is
done, if not all of the given space shall be distributed among the
children, e.g., shrinking the space as maybe to maintain a border or
reconfiguring the space entirely. The latter is used, for example,
to realize parent-centric radial layouts, as it is required by LR2:
Instead of further subdividing a circle section resulting from a
previous subdivision and thus making just another subdivision
w.r.t. the same circle center, one can simply embed a new full
circle into the circle segment. This circle will then be subdivided
w.r.t. to its own center and thus produce a parent-centric layout.
An example for this is given in Section 4.2 in Figure 4g.

Stage 4: allocation assigns each node of a tuple’s node set
a portion of the tuple’s space. These portions are not required to
be overlap-free, even though most allocation strategies adhere to a
strictly exclusive subdivision. After the assignment of individual
drawing space to each node, additional steps can be undertaken to
further optimize a possibly crude first space allocation. The end
result is again a set of tuples that can be mapped onto the Principal
State and thus be used as a starting point for the next level’s layout.

Stage 5: postlayout is performed after Stage I has made its
copy of the resulting space and starts off with the next level’s lay-
out on an independent drawing space. Then, this stage can perform
any final adjustments mainly regarding the appearance, such as re-
shaping it into a dot and selecting a connector style to produce an
explicit node-link rendering. If none is made, the shapes will be
drawn as they are — simply as rectangles, circle segments, etc.

3.2.2 Bottom-Up Traversal

Stage 0: initialization defines the shapes of the leaves that
are then used for the subsequent packing in the course of the layout
process. These are usually small shapes, e.g., small rectangles or
small spheres, which can be varied in their size by some chosen
attribute of the leaf nodes.

The Principal State forms the defined starting point for the layout
of each level in the bottom-up case as well. Initially, it contains
only the deepest leaves Lyax that are (1,1)-tuples by definition,

Root = {(.\'“W Al)}

allocation prelayout

initialization

Ly = {ons s AL Do (s),

initially: La; ;inicially: [Z]

| 1 y

L, = {...,(.Cl ,{/1“,...,11”}),...}

postlayout preprocess

Ly ={a () dm,1),nn

(a) Top-Down Traversal

L,.,= {...,(ﬁp,{n(’,...u77,"),...}

Leaves ={...,(45,y } My Do} Loy = e (4),

allocation

initialization prelayout

Leaves = {,({\, it $ s M),} L, = {..4,({.\"”},11;,),...}

initially: L\M* {initially: @

postlayout preprocess

Ly ={e({shm)} Ly = ((emndy b, Do)

(b) Bottom-Up Traversal

Figure 3: Schema of our tree layout pipeline for realizing (a) top-down layouts and (b) bottom-up layouts. The stages colored dark gray
are those that can be configured through operators. The light gray stages are constant as the direction of traversal is fixed depending
on whether the layout is top-down or bottom-up. The variables s denote geometric shapes, the variables n denote nodes of the tree. The
index p marks parent shapes/nodes, the index ¢ marks child shapes/nodes. Changes made at the individual stages to the current level L; are
highlighted in red. Modifications are denoted with a prime symbol, copies are denoted with a hat symbol. Blue indicates a mere renaming of
the variables without any change to them, which is done so that each iteration through the layout process starts with a level L.

and adds the leaves of the next higher level each time this state is
visited with the results of the packing process of lower levels. The
just laid out parent nodes are now considered children themselves
and passed as an input to the following traversal to retrieve their
parents for laying out the next level.

Stage 1: traversal is fixed to a bottom-up ASCEND. It takes
the current level L; and advances it to L; | by composing a new
tuple for all sets of sibling nodes among the existing tuples. First,
the new tuples contain copies s¢; of the child shapes s; belonging
to such a set of siblings. Second, the newly created tuples contain
the parent {n,,} of the sibling nodes {...,n,...}. If L;_; =0, the
layout process terminates.

Stage 2: preprocess is of lesser importance for the bottom-up
traversal. In some cases, this stage is again used for a weighting
of a node, which will lead to a down-scaling or up-scaling of this
node and all its contained child nodes in the later allocation stage.

Stage 3: prelayout adapts the shapes of the children to be
packed. For example, often these shapes are slightly enlarged to
ensure that they are not packed border-to-border, but that a small
gap in between them remains for better distinction.

Stage 4: allocation finally packs the shapes of the siblings
and then determines a bounding shape around them, which is
assigned to their parent node. Since packing is in principal an
NP-hard problem, heuristics are used to yield feasible results
in reasonable runtime. As a result, the parent node is assigned
its individual shape, which can thus be mapped onto the Prin-
cipal State and be used as a starting point for the next level’s layout.

Stage 5: postlayout does the same as the postlayout for the
top-down case and serves mainly the visual embellishment of the
layout and permits to change rendering styles.

3.3 The Tree Layout Operators

Operators are a well-established paradigm in information visualiza-
tion for configuring such a pipeline [9] and have even been formu-
lated as one of the base design patterns of visualization [12, 29].
With their imperative nature, they capture what to do in which or-
der, which is close to our procedural thinking about layout gener-
ation. As the input, as well as the output of all operators are the

aforementioned tuples, they can be called in arbitrary order, left out
completely (identity operator), or even be called multiple times in
a row with no conceptual restriction. Because of this consistent
behavior, each pipeline stage does not only admit a single such op-
erator, but also sequences of operators. At each pipeline stage, the
operators of such a sequence are applied in order to all tuples of the
level L;, which is currently laid out:

foreach reL; {
foreach op € op_sequence {
op(t,P,c)

}

The operators are thereby called with three parameters: 7 is the tu-
ple it shall be applied to, P is a set of operator-specific parameters
that govern the details of its function, and c is a conditional that can
be used to select a range of nodes for which this operator is to be
applied. The conditional is used to express local tree layouts that
apply different operators to different parts of the tree, as it is re-
quired by LR3. If the conditional does not hold true for the current
tuple ¢, then ¢ is passed back unchanged. Otherwise, the operator
transforms the tuple w.r.t. the given parameters:
func op(r,P,c) { if c(r) then r25¢ 1}

Depending on its purpose, each stage changes ¢ only in one aspect
— either its geometry, the shape(s), or its data, the node(s). In line
with [29], we further discern between two types of operators: cre-
ation operators and modification operators [29]. In combination,
the scope of an operator (a tuple’s shape or data element) and the
type of an operator (creation or modification) yield four different
kinds of operators: data creation, shape creation, data modifica-
tion, and shape modification. These four kinds of operators give
additional justification to the observed six stages of the pipeline,
as there are exactly four stages (Stage I through 4) — one to apply
each kind of operator, plus one stage each for preparing (Stage 0)
and finalizing (Stage 5) the layout through additional shape mod-
ifications. Table 1 lists which types of operators are applicable at
each stage and gives some examples for them. With this mapping
in the background, the pipeline can check automatically whether
a given operator is used correctly at a certain stage and thus aid
debugging of the layout. In the following, all four kinds of opera-
tors are shortly discussed and some instances of such operators are
given.

Table 1: Applicable operators at each stage of the layout process

Stage Type Scope Examples

Stage 0: initialization modification shape RESHAPE, SCALE,...

Stage 1: traversal creation data DESCEND, ASCEND

Stage 2: preprocess modification data ORDER, WEIGHT.,...

Stage 3: prelayout modification shape SCALE, ROTATE, TRANSLATE,...
Stage 4: allocation creation shape SQUARIFY, SLICE, STRIP, PACK,...
Stage 5: postlayout modification shape RESHAPE, TRANSLATE, FILL,...

Data Creation Operators construct a tuple’s node (set) from
existing tuples. In the top-down case, this is done through the
DESCEND operator, which takes a node and retrieves its children
as a new node set. In the bottom-up case, this is done through
the ASCEND operator, which takes a set of sibling nodes and
retrieves their parent as a new node. Both operators can be
used as an interface to a variety of data sources, e.g., not only
given trees that are stored on disk, but also to tree generating
algorithms that merely produce a new level when called. Data cre-
ation operators are used exclusively in Stage I of the layout process.

Shape Creation Operators have to visually reproduce the effects
of the used data creation operator. If in Stage I a DESCEND was
used to “split” a parent node into its children, the same has to be
done to its geometry — the shape has to be subdivided into a num-
ber of shapes for the children. This can be done by using opera-
tors, such as SLICE for a slice/dice subdivision, STRIP for a Strip
Treemap-like subdivision, or SQUARIFY for a subdivision as it is
used in Squarified Treemaps. Yet, if an ASCEND operator was
used in Stage 1 to “merge” a number of child nodes into their par-
ent node, this has to be reflected here as well and the child shapes
have to be packed with a PACK operator into a parent shape. Shape
creation operators are only used in Stage 4 of the layout process.

Since SR3 requires our operators to be agnostic of the actual
geometric shape they are called upon, they must be defined in
a generic way that permits to do so. For example, while the
squarified layout was only introduced for Treemaps, a generic
SQUARIFY operator must also be able to yield sensible results
when called for a circular drawing space. In this case, we use the
circle’s or circle segment’s radius and angle for subdivision, and
we approximate its “aspect ratio” through the ratio of its radius and
outer arc length. An example is given in Section 4.2 in Figure 4c.

Data Modification Operators prepare the nodes for subdivision
or packing. An example is the ORDER operator to sort a set of
siblings, as it is required by some subdivision operators, such as
SQUARIFY. Another possibility is to scale a node’s attribute value
through the WEIGHT operator to influence the shape creation. If
a node is assigned a weight of 0, this is equivalent to a pruning of
the tree at this node. Data modification operators can only be used
in Stage 2 of the layout process.

Shape Modification Operators adapt the visual appearance of
shapes. This includes three different aspects: shape transformation,
shape alteration, and shape representation. Operators that transform
the shape are the common geometric transformations SCALE, RO-
TATE, TRANSLATE, etc. Yet, these operators cannot, for exam-
ple, alter a rectangular shape into a circular one. This is, what the
RESHAPE operator does. Shape alteration is commonly used in
Stage 0 to yield a circular drawing space for radial layouts, but also
in Stage 5 to alter the shape into a dot to create a node-link dia-
gram. Furthermore, we use the RESHAPE operator to switch from
a root-centric to a parent-centric layout approach simply by reshap-
ing, for example, a circle segment from a previous subdivision step

into a new full circle. This realizes our requirement LR2. While
transforming or altering a shape modifies its geometry, shape rep-
resentation operators, such as FILL, SET_STROKE_WIDTH, etc.,
customize its appearance. This also includes operators to config-
ure a connector line in case the displayed shapes require an edge to
make the parent-child-relationship explicit. Operators of this kind
are used in Stages 0, 3, and 5.

4 IMPLEMENTATION AND EXAMPLES

Along the lines of our conceptual approach for generating tree
layouts, we implemented a web-based software prototype for the
subset of 2D top-down layouts. In contrast to existing web-based
frameworks with tree drawing capabilities, such as Protovis [6] or
D3 [7] that permit to choose from a set of predefined layouts, our
prototype allows users to assemble their own personal layouts by
means of plugging different operator sequences into the stages of
the pipeline. We present our implementation in the following sec-
tion, before giving two examples of how to use it for generating tree
drawings, and finally discussing its limitations.

4.1 Implementing a Generic Layout Framework

We chose to implement our operator-based layout framework using
JavaScript and SVG, so that it is independent of specific platforms
and readily available as an interactive demo over the web.! Our
implementation consists of:

e a loader for TreeML files that also computes the node at-
tributes, such as weight of the subtree and Strahler numbers;

o the pipeline that parses the operator sequence for each stage
and carries it out on each level of the loaded tree;

o the operators that are applied to the nodes and their shapes;

e arenderer for producing the SVG code from the layout.

Our implementation of the operators op(t, P,c) hides the first argu-
ment, the tuple 7, from the user as the pipeline takes care of looping
through the tuples and carries out the operators on them. Further-
more, the last argument, the conditional ¢, is optional. If no con-
ditional is given, it is assumed as TRUE and thus the operator is
applied to all nodes. The result is an operator signature that looks
very much like a procedure call and is thus very familiar to most
programmers. A list of the available operators to date can be found
online.2 The following examples show how our prototype is used
to generate tree drawings.

4.2 Layout Examples Generated with our Prototype

This section features two examples, first an implicit space-filling
tree drawing (shown in Figure 4a-4d) and second an explicit
node-link tree drawing (shown in Figure 4e-4h). Other exam-
ples can be found online at the framework’s demo website.
The dataset used throughout all examples is a full tree of height
4, with 4 children on the first level and 3 children on all other levels.

'http://tinyurl.com/operatordemo
2http://tinyurl.com/operatordocs

INITIALIZE:

PREPROCESS:
order(DESCENDING,“leaves”);
PRELAYOUT:

ALLOCATE:
squarify(“leaves”);
POSTLAYOUT:

setStrokeWidth(NODES,?2);

(a) Squarified Treemap

INITIALIZE:

PREPROCESS :

order(DESCENDING,“leaves”);

PRELAYOUT:

scale(BY,ALL,-10);
ALLOCATE :
squarify(“leaves”);
POSTLAYOUT :

setStrokeWidth(NODES,?2);
fill(“Blues”,DARK2LIGHT,
“node.level+1”,“root.height™);

(b) Nested Squarified Treemap

INITIALIZE:

reshape(CIRCLE);
PREPROCESS:
order(DESCENDING,“leaves”);
PRELAYOUT:

scale(BY,ALL,-10);
ALLOCATE :
squarify(“leaves”);
POSTLAYOUT :

setStrokeWidth(NODES,?2);
fill(“Blues”,DARK2LIGHT,
“node.level+1”,“root.height”);

(c) Nested “Squarified” Pietree

scale(BY,ALL,“-20*root.height™);
reshape(CIRCLE);
PREPROCESS:
order(DESCENDING,“leaves”);
PRELAYOUT:
translate(TOP,“5*node.level+20”,
“Inode.isRoot()”);
scale(BY,ALL,-10);
ALLOCATE :
squarify(“leaves”);
POSTLAYOUT :
translate(TOP,“5*node.level +20”,
“Inode.isRoot()”);
setStrokeWidth(NODES,?2);
fill(“Blues”,DARK2LIGHT,
“node.level+1”,“root.height”);

(d) Cascaded Pietree

INITIALIZE:
PREPROCESS :
PRELAYOUT:

ALLOCATE :
slicea(HORIZONTAL, “leaves”);
POSTLAYOUT :

scale(BY,TOP,“-root.dimY*
(1-node.level/root.height)”);
reshape(DOT);
connectToMMIDDLE, TOP);
fill(“#000000”);
setStrokeWidth(EDGES,3);

(e) Axes-parallel Node-Link Layout

INITIALIZE:
reshape(CIRCLE);
PREPROCESS :

PRELAYOUT:

ALLOCATE:
slicea(HORIZONTAL, “leaves”);
POSTLAYOQOUT:

scale(BY,TOP,“-root.dimY*
(1-node.level/root.height)”);
reshape(DOT);
connectTo(MIDDLE,TOP);
fill(“*#0000007);
setStrokeWidth(EDGES,3);

(f) Radial Node-Link Layout

INITIALIZE:
reshape(CIRCLE);
PREPROCESS:

PRELAYOUT:
reshape(CIRCLE);
ALLOCATE:
slice(HORIZONTAL, “leaves”);
POSTLAYOUT:
reshape(CIRCLE);
scale(BY,TOP,“-root.dimY*
(1-node.level/root.height)”);
reshape(DOT);
connectTo(MIDDLE,TOP);
fill(“*#000000™);
setStrokeWidth(EDGES,3);

(g) Bubble Tree

INITIALIZE:
reshape(CIRCLE);
PREPROCESS :
weight(3,“node.id==1");
PRELAYOUT :
reshape(CIRCLE);
ALLOCATE :
slice(HORIZONTAL, “leaves”);
POSTLAYOUT :
reshape(CIRCLE);
scale(BY,TOP,“-root.dimY*
(1-node.level/root.height)”);
reshape(DOT);
connectTo(MIDDLE,TOP);
fill(“*#000000™);
setStrokeWidth(EDGES,3);

(h) Weighted Bubble Tree

Figure 4: An example for the step-wise creation of a space-filling tree drawing (a)-(d) and a node-link tree drawing (e)-(h). The black layout
operators are those that were added from one step to the next to yield the change in appearance. The gray shapes in the background of the
node-link layouts in (e)-(h) are not part of the drawings, but only overlaid to illustrate the internally performed subdivision.

Generating an implicit space-filling tree drawing is rather sim-
ple, since our approach is built around the notion of distributing
space. In the following, we build such a layout in four steps:

The Squarified Treemap (Figure 4a) is generated with only
three lines of code in our operator-based representation: The
PREPROCESS must perform the ordering of the siblings w.r.t. the
node attribute that is later used for the actual squarified subdivision
in the ALLOCATE stage. This is important to yield good results,
as the squarified layout performs best if applied greedily [8]. In our
case, this is the number of leaves. To make the lines of the thus gen-
erated shapes somewhat thicker, we additionally assign all shapes a
stroke width of 2 in the POSTLAYOUT stage.

The Nested Squarified Treemap (Figure 4b) adds two additional
lines of code to the previous layout, the most important being
the one that is responsible for the actual nesting: The scaling of
shapes prior to their subdivision in the PRELAYOUT stage BY
—10 pixels in ALL directions. This creates the border on each
side of the rectangular shapes and thus effectively generates a
nested Treemap [13]. To make the different levels of inclusion
even more obvious, the levels are additionally color-coded in the
POSTLAYOUT stage. For this, the “Blues” color scheme from Col-
orBrewer [11] is applied from dark to light. The color scale ranges
from O (dark blue) to a maximal value equaling the height of the en-
tire tree (light blue). A node is then colored according to its level.

The Nested Squarified Pietree (Figure 4c) is an example for an
entirely new layout generated out of the previous one by simply
adding one operator: Reshaping the originally rectangular drawing
space into a circular one in the INITIALIZE stage. Pietrees were
originally only defined for Slice&Dice subdivisions [21]. Yet, with
our shape-agnostic layout operators, we can just as easily produce
a radial “squarified” subdivision.

The Cascaded Squarified Pietree (Figure 4d) produces the final
layout by adding a small offset to the position of each individual
shape — very much in the spirit of Cascaded Treemaps [19]. To
achieve this, we add the TRANSLATE operator in two places: in
the PRELAYOUT stage to perform the shifting on the shape’s copy
before the next subdivision, and in the POSTLAYOUT stage to also
show this shifting for the original shape. Since this layout has
the property of growing outwards, we furthermore have to scale
down the root shape proportionally to the number of levels during
INITIALIZATION.

To produce an explicit node-link tree drawing, one has to ad-
here to the space-centric thinking and compute an implicit layout
first, before substituting the generated spaces with dots and con-
necting them via edges during POSTLAYOUT. We produce such a
layout in the following four steps:

To generate a Bottom-to-Top Layout (Figure 4e) in its implicit
form, a horizontal slicing w.r.t. the number of leaves is performed
inthe ALLOCATE stage. The resulting space is then scaled down in-
versely proportional to the current level in the POSTLAYOUT stage.
This yields an Icicle Plot-like subdivision [15], which is then trans-
formed into its explicit appearance through the remaining layout
operators in the POSTLAYOUT stage: At first, the rectangle is re-
shaped into a dot. The position of this dot is then adjusted to be the
middle-top of each rectangle, the dot is filled solid black, and the
stroke width of the edges is set to 3.

A Radial Layout (Figure 4f) is generated from the previous lay-
out by reshaping the root into a circle in the INITIALIZE stage.
This transforms the underlying Icicle Plot into a Sunburst [27] and
thus the axes-parallel node-link layout into a radial one.

The Bubble Tree [4] of the next step (Figure 4g) is a parent-
centric layout where the children are distributed around their parent
as a center, as opposed to the previous root-centric layouts, in which
the root remains the center of the layout for all nodes. This prop-
erty is added to the previous layout in the PRELAYOUT stage by

reshaping the gained circle segment at each level into a new full
circle, which will be embedded into the generated segment. The
reshaping has also to take place in the POSTLAYOUT stage, as oth-
erwise the dot will be placed in the middle of the circle segment
and not in the middle of the inscribed circle, which gives a slightly
skewed placement. Note, that the scaling in the POSTLAYOUT is
no longer necessary for this layout and can optionally be omitted.

Finally, the last step shows a Weighted Bubble Tree (Figure 4h)
that illustrates the effect of weighting a particular node (and thus
also the entire subtree beneath it). In this case, a node was selected
by its ID and assigned three times as much weight for the subdivi-
sion, as it would normally have had. This is done by a simple call
of the WEIGHT operator during the PREPROCESS stage.

4.3 Limitations

Our operator-based framework aims to be a powerful tool that can
generate a wealth of different tree drawings (LR1-LR3) with only
limited coding effort for the user (SR1-SR3). To achieve this, the
complexity of the layout algorithms has either been hidden in the
individual operators (increasing the coding effort for the imple-
menter) or stripped away (decreasing the number of producible lay-
outs by the user). This is a trade-off that has to be decided on by the
implementer. In our prototype, we chose to make the cut at 2D tree
drawings with rectangular and circular shapes. Therefore, layouts
relying on 3D or polygonal subdivision cannot be reproduced with
it. Yet, most common layouts can be generated with this set of geo-
metric shapes, while the involved computational geometry, e.g., for
the RESHAPE or the shape-agnostic SQUARIFY operators, is still
manageable and has satisfactory runtimes even for larger trees. An
extension to 3D along the lines of [25] certainly lies within reach.
While these issues concern the implementer, they say nothing about
the actual handling of our operator-based approach by the user, on
which we report in the next section.

5 EVALUATION

We conducted a user study with 8 participants from the University
of Calgary’s Computer Science and Environmental Design depart-
ments (3 female, 5 male / 3 PhD students, 3 Master students, 2
undergraduates). The participants had no prior knowledge of our
prototype and they were given a 15 minutes introduction. Then they
had 45 minutes to complete a number of tree layout tasks using the
operator-based framework in a simple setup consisting of a text ed-
itor to code the operator sequences and an internet browser to test
the outcome. Throughout the study, participants had access to doc-
umentation of all available operators. The study was subdivided
in two parts of increasing difficulty. In the first part, the partici-
pants were given a predefined operator-based tree layout in which
they had to make small changes to adapt it — for example, re-order
the nodes or rotate the layout. As this first part was for familiar-
izing the participants with the actual coding, they were given hints
if they experienced difficulties. In the second part, the participants
were handed a printout of the Nested Squarified Treemap drawing
from Figure4b and they were asked to build it from scratch. The
study was conducted individually with each participant and data
was gathered through think-aloud protocol [5], screen capturing,
and semi-structured interviews [18] afterwards.

Overall, most participants liked to draw trees using the genera-
tive approach for its simplicity and immediateness. The simplicity
was highlighted by many participants, as they enjoyed not having to
deal with the complexity hidden behind the operators. One partici-
pant mentioned that “with few instructions, I can generate complex
visualization, which I really like very much.” Another participant
said “I just need to understand what effects [an operator] has on
the visualization, but I do not need to understand the inner work-
ings.” The observed simplicity is directly tied to the immediateness,
as a code change means to move an operator from one place to an-

other one, without having to care about any surrounding code. It
was remarked by one of the participants, that “when you have very
simple commands like this, it makes it easier for you to explore and
try out different things.” These statements reflect the two properties
of operator-based design: the imperative nature of the operators,
which only specifies what shall be done, but leaves the how to the
software, as well as their consistency, which permits to experiment
by shuffling them around freely.

The latter was particularly helpful for the second part of the
study, in which the participants had most problems with finding the
right stages for the operators and the recursive nature of the layout
process. One participant commented that “the most difficult things
for me were to know where to put everything.” Yet, since the op-
erators can be arranged in almost any order and will in the worst
case generate unwanted, impractical tree drawings, 5 out of 8 par-
ticipants were able to complete the second part just by using a trial
and error approach and playing around with different operator or-
derings. Since this playful approach in turn also gave them insight
into the layout process, each trial was valuable as a hands-on learn-
ing experience about tree layouts. While we never had in mind that
our approach could be a teaching aid about tree layouts, the partici-
pants’ feedback suggests to explore this option among other aspects
of future work, as they are sketched in the following section.

6 CONCLUSION AND FUTURE WORK

The user feedback shows that the operator-based approach repre-
sents a nice balance between simplicity and flexibility for generat-
ing drawings of rooted trees. The participants of our study liked this
flexibility, even if it meant that they first had to learn about the tree
layout process running in the background. Yet, this learning phase
is fast to master with a playful, trial-and-error mindset. To validate
the findings from our evaluation, we are currently in the planning
phase of a larger user study that will compare our framework with
other existing APIs for generating tree layouts.

In future work, we want to investigate how to utilize layout oper-
ator sequences for common interaction events, such as ONCLICK,
ONDRAG, etc. For example, a double-click can then be used for
interactive folding by carrying out a “reshape(NONE)” operator for
the clicked node and all its descendants. Or a zooming interaction
can be tied to the WEIGHT operator illustrated in Figure 4h to en-
large subtrees of interest, while at the same time automatically scal-
ing down other parts of the layouts. This would make the operators
useful even beyond the pure layout generation.

On the conceptual side, we are eager to investigate the prospect
of not only using our layout pipeline for either top-down or bottom-
up layouts, but to actually combine the two in the same hybrid man-
ner used for other local layout decisions. This can be done by using
the Principal State as a junction point between the two, because it
contains the same (1,1)-tuples for both traversal directions. As a
result, it would for example be possible to pack bottom-up a num-
ber of subtrees that have before been laid out top-down. This would
further broaden the scope of our generic approach to an even larger
variety of producible tree layouts.

Acknowledgements

Work on this research was funded by the NSERC SurfNet Strategic
Network, as well as by the German Research Foundation (DFG).
The authors thank Christian Tominski, Steffen Hadlak, and Martin
Luboschik for their helpful comments on this paper.

REFERENCES

[1] D. Auber, M. Delest, J.-P. Domenger, P. Duchon, and J.-M. Fédou.
New Strahler numbers for rooted plane trees. In Proc. of CMCSA’04,
pages 203-215. Birkhauser, 2004.

[2] M. Balzer and O. Deussen. Voronoi treemaps. In Proc. of IEEE Info-
Vis’05, pages 49-56. IEEE Computer Society, 2005.

[3]
[4]

[5]

[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

T. Baudel and B. Broeksema. Capturing the design space of sequential
space-filling layouts. JEEE TVCG, 18(12):2593-2602, 2012.

R. Boardman. Bubble Trees — the visualization of hierarchical infor-
mation structures. In Extended abstracts of CHI’00, pages 315-316.
ACM Press, 2000.

M. T. Boren and J. Ramey. Thinking aloud: reconciling theory
and practice. IEEE Transactions on Professional Communication,
43(3):261-278, 2000.

M. Bostock and J. Heer. Protovis: A graphical toolkit for visualiza-
tion. JEEE TVCG, 15(6):1121-1128, 2009.

M. Bostock, V. Ogievetsky, and J. Heer. D3: Data driven documents.
IEEE TVCG, 17(12):2301-2309, 2011.

M. Bruls, K. Huizing, and J. van Wijk. Squarified Treemaps. In Proc.
of IEEE/TCVG VisSym’00, pages 33—42. Eurographics Assoc., 2000.
E. H. Chi. A taxonomy of visualization techniques using the data state
reference model. In Proc. of IEEE InfoVis’00, pages 69-75. IEEE
Computer Society, 2000.

G. Griffin, S. Li, C. Gramazio, and R. Chang. An analytical approach
for the creative design of new visualizations. In IEEE InfoVis’11
Poster Session, 2011.

M. A. Harrower and C. A. Brewer. ColorBrewer.org: An online tool
for selecting color schemes for maps. The Cartographic Journal,
40(1):27-37, 2003.

J. Heer and M. Agrawala. Software design patterns for information
visualization. IEEE TVCG, 12(5):853-860, 2006.

B. Johnson and B. Shneiderman. Tree-Maps: A space-filling approach
to the visualization of hierarchical information structures. In Proc. of
IEEE Vis’91, pages 284-291. IEEE Computer Society, 1991.

S. Jiirgensmann and H.-J. Schulz. A visual survey of tree visualization.
In IEEE InfoVis’10 Poster Session, 2010.

J. B. Kruskal and J. M. Landwebhr. Icicle plot: Better displays for hier-
archical clustering. The American Statistician, 37(2):162-168, 1983.
H. Kubota, T. Nishida, and Y. Sumi. Visualization of contents archive
by contour map representation. In New Frontiers in Artificial Intelli-
gence, pages 19-32. Springer, 2006.

S. Leipert. Drawing trees. In D. P. Mehta and S. Sahni, editors, Hand-
book of Data Structures and Applications, chapter 45. CRC Press,
2004.

T. R. Lindlof and B. C. Taylor. Qualitative Communication Research
Methods. SAGE Publications, 3rd edition, 2011.

H. R. Lii and J. Fogarty. Cascaded Treemaps: Examining the visibility
and stability of structure in Treemaps. In Proc. of GI'08, pages 259—
266. Canadian Information Processing Society, 2008.

Q. V. Nguyen and M. L. Huang. Space-optimized tree: A connec-
tion+enclosure approach for the visualization of large hierarchies. Pal-
grave Information Visualization, 2(1):3-15, 2003.

R. O’Donnell, A. Dix, and L. J. Ball. Exploring the PieTree for rep-
resenting numerical hierarchical data. In Proc. of HCI’06, pages 239—
254. Springer, 2006.

A. Rusu. Tree drawing algorithms. In R. Tamassia, editor, Handbook
of Graph Drawing and Visualization, chapter 5. CRC Press, 2013.
H.-J. Schulz. Treevis.net: A tree visualization reference. /[EEE Com-
puter Graphics and Applications, 31(6):11-15, 2011.

H.-J. Schulz, S. Hadlak, and H. Schumann. Point-based tree repre-
sentation: A new approach for large hierarchies. In Proc. of IEEE
PacificVis’09, pages 81-88. IEEE Computer Society, 2009.

H.-J. Schulz, S. Hadlak, and H. Schumann. The design space of im-
plicit hierarchy visualization: A survey. I[EEE TVCG, 17(4):393-411,
2011.

A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE TVCG, 15(6):977-984, 2009.

J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An eval-
uation of space-filling information visualizations for depiction hierar-
chical structures. International Journal of Human-Computer Studies,
53(5):663-694, 2000.

S. T. Teoh and K.-L. Ma. RINGS: A technique for visualizing large
hierarchies. In Proc. of GD’02, pages 51-73. Springer, 2002.

Z. Xie, Z. Guo, M. O. Ward, and E. A. Rundensteiner. Operator-
centric design patterns for information visualization software. In Proc.
of VDA’ 10, pages 7530-0J. SPIE, 2010.

