Axes-Based Visualizations with Radial Layouts

Christian Tominski
James Abello
Heidrun Schumann

ACM Symposium on Applied Computing
Nicosia, Cyprus
15th of March 2004
Outline

• Introduction
• Axes-Based Visualization
 • Interactive Axes
 • Radial Axes Arrangements
• VisAxes Framework
 • Demonstration
• Conclusion & Future Work
Introduction
Visualization

- Multivariate data sets are everywhere: business data, scientific data, census data, human health data, etc.

- Data must be analyzed in order to make it valuable

- Visual analysis have proved to be an effective means
Introduction

Motivation

- Data often inherit a dependency on one dimension of reference
- Task: Depict the dependency of multiple variables on the dimension of reference
- Approaches:
 - Standard techniques like *line charts*
 + Expressive for depicting this dependency,
 - Difficult to visualize multiple variables
 - Special techniques like *Parallel Coordinates*
 + Expressive for visualizing multiple variables
 - Hard to comprehend dependency for all variables
- Idea: Join the efficiency of both approaches
Axes-Based Visualization
General Approach and Requirements

- General approach
 - Variables of a data set are mapped to axes
 - Axes are appropriately scaled and arranged on screen

- A conceptual distinction of axes design and axes arrangement is necessary

- Requirements
 - Development of general axes-based framework
 - Provide different axes for different visualization tasks and different data types
 - Allow for a direct variable-axis-mapping manipulation
 - Examine expressiveness of different axes arrangements
Axes-Based Visualization

Axes Design

- **Simple Axis**
 - Constitutes a min-max-mapping of a variable

- **Scroll Axis**
 - Sub-range of a variable is mapped onto the axis
 - Slider depicts sub-range and can be used to interactively adjust the sub-range
Axes-Based Visualization

Axes Design

- **Focus+Context Axis**
 - Constitutes a non-linear min-max-mapping
 - Focus slider for interactive focus and magnification adjustment
- **Hierarchical Axis**
 - Hierarchically organized variables like time are represented by a hierarchical axes
 - Nodes can be expanded or collapsed
Axes-Based Visualization

Axes Arrangement

TimeWheel

- **Motivation:** Point out the dimension of reference
- **Approach:**
 - Centrally exposed axis representing the dimension of reference
 - Radially arranged axes representing depending variables
 - Data records are depicted by line segments

- Axis of reference
- Variable axes
- Lines connecting time and variable values
Advancing the *TimeWheel*

- Interactive rotation allows “focusing” different variables

- Emphasizing axes in focus
 - Aid users during data exploration and de-clutter the display
 - Axes length adjustment and color-fading
MultiComb

- Motivation: Make use of the expressiveness of line charts
- Approach:
 - Arrange plots radially
 - Each plot represents a depending variable and the dimension of reference directly
 - Two variants:
 - Plots extending outwards from the central point
 - Plots extending around the central point
Advancing the *MultiComb*

- Use the center of the *MultiComb* to provide additional information
 - Aggregate view in combination with a scroll axis
 - Aggregated “history” values are mapped to small arcs
 - Spike glyph for easy value comparison
 - Each value of a data record is mapped to the length of a spike in the spike glyph
Axes-Based Visualizations

Visualization Examples

- Change form increase to decrease
- Change form decrease to increase
- Outliers
- TimeWheels on a map
- Decreasing variable
- Increasing variable
The Framework VisAxes

Architecture

- The presented techniques have been realized in the interactive framework VisAxes
- DataBox, ToolBox and VisAxesWindow are main components of the architecture
- .Net and C# have been used as development environment
The Framework VisAxes

Demonstration
Conclusion & Future Work

- Innovative interactive axes for easy data exploration
- New axes arrangements for emphasizing one dimension of reference in a multidimensional data set
- Implementation of the concept in the modular axes-based framework VisAxes

Future work
- Automatic variable-axis-mapping (similarity, correlation, ...)
- Extension of the techniques to 3D
- User tests to prove eligibility of the approach