
Interactive Poster: CGV – Coordinated Graph Visualization
James Abello∗

DIMACS
Rutgers University

Hans-Jörg Schulz†

Institute for Computer Science
University of Rostock

Heidrun Schumann‡

Institute for Computer Science
University of Rostock

Christian Tominski§

Institute for Computer Science
University of Rostock

ABSTRACT

Visualizing large hierarchized graphs is such a challenging task that
it is hardly possible to represent all relevant information within a
single comprehensible image.

To address that challenge, we pursue multiple linked view vi-
sualization. We report on a visualization framework for exploring
hierarchized graphs that focusses on a modular architecture based
on the model-view-controller (MVC) concept. MVC helps us in co-
ordinating views as users explore and navigate the data. Several in-
teraction facilities further support users in applying the framework
for their data and their task at hand.

Keywords: Graph visualization, model-view-controller, interac-
tion, lenses, dynamic filtering.

1 INTRODUCTION

Visual analysis of graph structures is a hot topic in many domains,
as for instance system biology, network security, or sociology. In
many of these domains, we are facing graphs that are too large and
complex to be represented by a single visualization. In such cases,
creating a graph hierarchy helps to drive interactive visual analy-
sis [2]. The challenge here is that a graph hierarchy imposes certain
requirements on the visualization. In our view, it is mandatory to
represent the following items:

• clustering hierarchy H,

• anti-chains (abstractions of the underlying graph G), and

• data attributes associated to nodes and edges.

It is hardly possible to visualize all these aspects with a single
technique. As demonstrated in previous work, multiple views are
a solution to this problem [1]. So far, hard-wired view composi-
tion has been the chosen approach. We advocate here the use of
an architecture where a more flexible set of views can be easily
integrated and customized (e.g., to address particular needs of an
application scenario). We report on how the model-view-controller
pattern (MVC) can be utilized to achieve a flexible system architec-
ture for interactive graph visualization.

2 FRAMEWORK ARCHITECTURE

The model-view-controller (MVC) concept is widely applied in
scenarios where data (M) needs to be represented (V) and are sub-
ject to interaction (C). The strict separation of data, views, and in-
teraction is the major benefit of MVC. Architectural separation of
views and interaction does not necessarily mean that users are not
allowed to interact with the views directly. Adhering to MVC al-
lows for flexible architectures where components can be plugged in
on demand. In particular, we instantiate MVC as follows.

The main data structure (M) contains all necessary elements to
model a graph hierarchy (see [1]). It integrates the underlying graph

∗e-mail: abello@dimacs.rutgers.edu
†e-mail: hjschulz@informatik.uni-rostock.de
‡e-mail: schumann@informatik.uni-rostock.de
§e-mail: ct@informatik.uni-rostock.de

G, the clustering hierarchy H, and associated anti-chains (i.e., ab-
stractions of G) with their corresponding nodes and edges. It also
takes into account (multivariate) data associated with nodes.

A view (V) is responsible for representing the data model. What
aspects of the data are represented depends on the specific imple-
mentation of a view. We explicitly incorporate multiple views in
order to represent different data aspects. In Sect. 3, we give exam-
ples of views currently available in the system.

Views are not allowed to modify the data (read-only access).
However, the interactive exploration of a graph via anti-chains re-
quires manipulation of the data model, in order to switch between
different levels of abstraction. To guarantee that the data model is
consistent at all times, even when represented by multiple views,
manipulation requests are propagated to a controller (C). In turn,
the controller notifies all views of the pending manipulation. If no
view has an objection against the manipulation, the data model is
altered. Then all views are notified about the change. It turned out
to be a good solution to first notify the view that issued the manip-
ulation request and then inform all other views. That gives users
immediate feedback at the place where they performed the inter-
action. An overview of available interaction techniques is given in
Sect. 4.

3 VIEWS IN CGV
MVC lays the ground for multiple view visualization. Multiple
views help in communicating different data aspects and in perform-
ing different visualization tasks. This assumes that all views are
arranged in a way that really supports the task at hand. Since the
preferred arrangement depends on users and their tasks, we embed
the views in a docking framework. This allows users to create ar-
rangements different from the default setting, and furthermore, to
store and reload customized arrangements.

Based on the arrangement used in [1], we designed the default
setup of the framework as shown in Fig. 1. In particular, we provide
the following views:

• Graph view provides at all times a node-link view of the cur-
rent visible anti-chain, where nodes and edges are aggrega-
tions of the underlying graph. The purpose of this main view
is to visualize structure and clusters, and to highlight a se-
lected data attribute by means of color. The graph layout can
be generated by a variety of algorithms, as for instance Lin-
Log or a classic spring embedder.

• Textual tree view also visualizes the current anti-chain, how-
ever the represented edges are edges of the clustering hierar-
chy H. This view’s purpose is to show the structure of H,
labels, and to drive easy navigation. Enhanced visual and in-
teraction capabilities support the user [4].

• Graphical hierarchy view gives an overview of the entire clus-
tering hierarchy H. Additionally, a user-chosen data attribute
can be color-coded.

• Matrix view provides a density visualization of the macro-
graph determined by the current anti-chain. This view enables
users to spot dense graph clusters that may be used as triggers
for further exploration.



Matrix View

Tree View

Hierarchy View

Graph View

Node Info View

Filter

Statistics View

Lens

Figure 1: CGV – Coordinated graph visualization with multiple views.

• Statistics view represents meta information (e.g., size of the
current anti-chain or the number of nodes and edges currently
visible) in textual form, which is very helpful when exploring
an unknown data set (not visible in Fig. 1).

• Node Info View represents meta information for the currently
focussed node.

4 INTERACTION FACILITIES

To facilitate easy data exploration, we provide common interac-
tion techniques, such as zoom&pan or scrolling. To allow users
to switch between different abstractions of the hierarchized graph,
nodes can be expanded and collapsed. Additionally, users can se-
lect and focus on nodes. All views follow consistent common in-
teraction policies (e.g., double left click on a node in any view will
result in expansion of that node). Recall that views do not alter the
data model, but propagate requests to the controller. This decouples
the specific physical action (e.g., click) from the effect (e.g., node
expansion) and enables us to provide a basic undo/redo mechanism.

Beyond the aforementioned interactions, the system offers sev-
eral novel interaction facilities:

• Edge-based navigation aims at supporting the common task
of path navigation. For that purpose, we make the edges of a
focussed node interactive. Clicking on such an edge navigates
to the respective neighbor and then focusses on that node au-
tomatically.

• Lenses are helpful tools to support locally restricted visual-
ization tasks [4]. They can help to tidy up edge clutter (task:
”Which edges connect to a node?”), or can perform local
transformations on the graph layout to bring possibly dis-
tributed nodes of interest close together (task: ”What are the
neighbors of a node?”).

• Dynamic filtering is provided to support users in exploring
the data for interesting nodes or selecting nodes relevant for
a particular task at hand. Our filtering mechanism allows for
logical combinations of basic filters, which operate on node
attributes (e.g., quantitative values or categorical labels). We
utilize a sieve metaphor to ease the interactive composition of
filters. Through automatic fading or omitting filtered nodes,
users get immediate visual feedback on the filtering result.

5 CONCLUSION

This work illustrates the use of the model-view-controller pattern
(MVC) for coordinated graph visualization. This is exemplified in
a system termed CGV (available at [3]). The proposed framework
offers several common linked views and some novel interaction fa-
cilities (lenses and edge navigation). We are currently exploring the
usefulness of other visualization techniques to be integrated into the
framework. This is work in progress towards the end goal of facili-
tating user- and task-dependent setups (i.e., selection of techniques
and their screen arrangement).

REFERENCES

[1] Abello, van Ham, and Krishnan. ASK-GraphView: A Large Scale
Graph Visualization System. IEEE Transactions on Visualization and
Computer Graphics, 12(5), 2006.

[2] Herman, Melançon, and Marshall. Graph Visualization and Navigation
in Information Visualization: A Survey. IEEE Transactions on Visual-
ization and Computer Graphics, 6(1), 2000.

[3] Tominski. CGV prototype. http://www.informatik.
uni-rostock.de/˜ct/CGV/CGV.html (accessed June 2007).

[4] Tominski, Abello, van Ham, and Schumann. Fisheye Treeviews and
Lenses for Graph Visualization. In Proc. IV’06, London, 2006.

http://www.informatik.uni-rostock.de/~ct/CGV/CGV.html
http://www.informatik.uni-rostock.de/~ct/CGV/CGV.html

	Introduction
	Framework Architecture
	Views in CGV
	Interaction Facilities
	Conclusion

